|
enum | {
Size = MatrixType::RowsAtCompileTime
, SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1)
, Options = MatrixType::Options
, MaxSize = MatrixType::MaxRowsAtCompileTime
,
MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
} |
|
typedef _MatrixType | MatrixType |
| Synonym for the template parameter _MatrixType . More...
|
|
typedef MatrixType::Scalar | Scalar |
|
typedef NumTraits< Scalar >::Real | RealScalar |
|
typedef Eigen::Index | Index |
|
typedef Matrix< Scalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > | CoeffVectorType |
|
typedef internal::plain_col_type< MatrixType, RealScalar >::type | DiagonalType |
|
typedef Matrix< RealScalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > | SubDiagonalType |
|
typedef internal::remove_all< typename MatrixType::RealReturnType >::type | MatrixTypeRealView |
|
typedef internal::TridiagonalizationMatrixTReturnType< MatrixTypeRealView > | MatrixTReturnType |
|
typedef internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::add_const_on_value_type< typename Diagonal< const MatrixType >::RealReturnType >::type, const Diagonal< const MatrixType > >::type | DiagonalReturnType |
|
typedef internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::add_const_on_value_type< typename Diagonal< const MatrixType, -1 >::RealReturnType >::type, const Diagonal< const MatrixType, -1 > >::type | SubDiagonalReturnType |
|
typedef HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > | HouseholderSequenceType |
| Return type of matrixQ() More...
|
|
template<typename _MatrixType>
class Eigen::Tridiagonalization< _MatrixType >
Tridiagonal decomposition of a selfadjoint matrix.
\eigenvalues_module
- Template Parameters
-
_MatrixType | the type of the matrix of which we are computing the tridiagonal decomposition; this is expected to be an instantiation of the Matrix class template. |
This class performs a tridiagonal decomposition of a selfadjoint matrix
such that:
where
is unitary and
a real symmetric tridiagonal matrix.
A tridiagonal matrix is a matrix which has nonzero elements only on the main diagonal and the first diagonal below and above it. The Hessenberg decomposition of a selfadjoint matrix is in fact a tridiagonal decomposition. This class is used in SelfAdjointEigenSolver to compute the eigenvalues and eigenvectors of a selfadjoint matrix.
Call the function compute() to compute the tridiagonal decomposition of a given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) constructor which computes the tridiagonal Schur decomposition at construction time. Once the decomposition is computed, you can use the matrixQ() and matrixT() functions to retrieve the matrices Q and T in the decomposition.
The documentation of Tridiagonalization(const MatrixType&) contains an example of the typical use of this class.
- See also
- class HessenbergDecomposition, class SelfAdjointEigenSolver
template<typename _MatrixType >
template<typename InputType >
Computes tridiagonal decomposition of given matrix.
- Parameters
-
[in] | matrix | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
- Returns
- Reference to
*this
The tridiagonal decomposition is computed by bringing the columns of the matrix successively in the required form using Householder reflections. The cost is
flops, where
denotes the size of the given matrix.
This method reuses of the allocated data in the Tridiagonalization object, if the size of the matrix does not change.
Example:
Output: