NDDEM
Tridiagonalization.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_TRIDIAGONALIZATION_H
12 #define EIGEN_TRIDIAGONALIZATION_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
19 template<typename MatrixType>
21  : public traits<typename MatrixType::PlainObject>
22 {
23  typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
24  enum { Flags = 0 };
25 };
26 
27 template<typename MatrixType, typename CoeffVectorType>
29 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
30 }
31 
64 template<typename _MatrixType> class Tridiagonalization
65 {
66  public:
67 
69  typedef _MatrixType MatrixType;
70 
71  typedef typename MatrixType::Scalar Scalar;
73  typedef Eigen::Index Index;
74 
75  enum {
76  Size = MatrixType::RowsAtCompileTime,
77  SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
78  Options = MatrixType::Options,
79  MaxSize = MatrixType::MaxRowsAtCompileTime,
80  MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
81  };
82 
88 
93 
96  const Diagonal<const MatrixType, -1>
98 
101 
115  : m_matrix(size,size),
116  m_hCoeffs(size > 1 ? size-1 : 1),
117  m_isInitialized(false)
118  {}
119 
130  template<typename InputType>
131  explicit Tridiagonalization(const EigenBase<InputType>& matrix)
132  : m_matrix(matrix.derived()),
133  m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
134  m_isInitialized(false)
135  {
137  m_isInitialized = true;
138  }
139 
157  template<typename InputType>
159  {
160  m_matrix = matrix.derived();
161  m_hCoeffs.resize(matrix.rows()-1, 1);
163  m_isInitialized = true;
164  return *this;
165  }
166 
184  {
185  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
186  return m_hCoeffs;
187  }
188 
220  inline const MatrixType& packedMatrix() const
221  {
222  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
223  return m_matrix;
224  }
225 
242  {
243  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
244  return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
245  .setLength(m_matrix.rows() - 1)
246  .setShift(1);
247  }
248 
267  {
268  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
269  return MatrixTReturnType(m_matrix.real());
270  }
271 
286 
298 
299  protected:
300 
304 };
305 
306 template<typename MatrixType>
309 {
310  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
311  return m_matrix.diagonal().real();
312 }
313 
314 template<typename MatrixType>
317 {
318  eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
319  return m_matrix.template diagonal<-1>().real();
320 }
321 
322 namespace internal {
323 
347 template<typename MatrixType, typename CoeffVectorType>
349 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
350 {
351  using numext::conj;
352  typedef typename MatrixType::Scalar Scalar;
353  typedef typename MatrixType::RealScalar RealScalar;
354  Index n = matA.rows();
355  eigen_assert(n==matA.cols());
356  eigen_assert(n==hCoeffs.size()+1 || n==1);
357 
358  for (Index i = 0; i<n-1; ++i)
359  {
360  Index remainingSize = n-i-1;
361  RealScalar beta;
362  Scalar h;
363  matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
364 
365  // Apply similarity transformation to remaining columns,
366  // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
367  matA.col(i).coeffRef(i+1) = 1;
368 
369  hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
370  * (conj(h) * matA.col(i).tail(remainingSize)));
371 
372  hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
373 
374  matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
375  .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
376 
377  matA.col(i).coeffRef(i+1) = beta;
378  hCoeffs.coeffRef(i) = h;
379  }
380 }
381 
382 // forward declaration, implementation at the end of this file
383 template<typename MatrixType,
384  int Size=MatrixType::ColsAtCompileTime,
386 struct tridiagonalization_inplace_selector;
387 
428 template<typename MatrixType, typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
430 void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
431  CoeffVectorType& hcoeffs, bool extractQ)
432 {
433  eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
434  tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, hcoeffs, extractQ);
435 }
436 
440 template<typename MatrixType, int Size, bool IsComplex>
442 {
445  template<typename DiagonalType, typename SubDiagonalType>
446  static EIGEN_DEVICE_FUNC
447  void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, bool extractQ)
448  {
449  tridiagonalization_inplace(mat, hCoeffs);
450  diag = mat.diagonal().real();
451  subdiag = mat.template diagonal<-1>().real();
452  if(extractQ)
453  mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
454  .setLength(mat.rows() - 1)
455  .setShift(1);
456  }
457 };
458 
463 template<typename MatrixType>
464 struct tridiagonalization_inplace_selector<MatrixType,3,false>
465 {
466  typedef typename MatrixType::Scalar Scalar;
467  typedef typename MatrixType::RealScalar RealScalar;
468 
469  template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
470  static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, bool extractQ)
471  {
472  using std::sqrt;
474  diag[0] = mat(0,0);
475  RealScalar v1norm2 = numext::abs2(mat(2,0));
476  if(v1norm2 <= tol)
477  {
478  diag[1] = mat(1,1);
479  diag[2] = mat(2,2);
480  subdiag[0] = mat(1,0);
481  subdiag[1] = mat(2,1);
482  if (extractQ)
483  mat.setIdentity();
484  }
485  else
486  {
487  RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
488  RealScalar invBeta = RealScalar(1)/beta;
489  Scalar m01 = mat(1,0) * invBeta;
490  Scalar m02 = mat(2,0) * invBeta;
491  Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
492  diag[1] = mat(1,1) + m02*q;
493  diag[2] = mat(2,2) - m02*q;
494  subdiag[0] = beta;
495  subdiag[1] = mat(2,1) - m01 * q;
496  if (extractQ)
497  {
498  mat << 1, 0, 0,
499  0, m01, m02,
500  0, m02, -m01;
501  }
502  }
503  }
504 };
505 
509 template<typename MatrixType, bool IsComplex>
510 struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
511 {
512  typedef typename MatrixType::Scalar Scalar;
513 
514  template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
515  static EIGEN_DEVICE_FUNC
516  void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, bool extractQ)
517  {
518  diag(0,0) = numext::real(mat(0,0));
519  if(extractQ)
520  mat(0,0) = Scalar(1);
521  }
522 };
523 
531 template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
532 : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
533 {
534  public:
539  TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
540 
541  template <typename ResultType>
542  inline void evalTo(ResultType& result) const
543  {
544  result.setZero();
545  result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
546  result.diagonal() = m_matrix.diagonal();
547  result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
548  }
549 
552 
553  protected:
554  typename MatrixType::Nested m_matrix;
555 };
556 
557 } // end namespace internal
558 
559 } // end namespace Eigen
560 
561 #endif // EIGEN_TRIDIAGONALIZATION_H
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Definition: ArrayCwiseUnaryOps.h:187
EIGEN_DEVICE_FUNC RealReturnType real() const
Definition: CommonCwiseUnaryOps.h:100
internal::conditional< NumTraits< Scalar >::IsComplex, const CwiseUnaryOp< internal::scalar_real_op< Scalar >, const Derived >, const Derived & >::type RealReturnType
Definition: CommonCwiseUnaryOps.h:24
EIGEN_DEVICE_FUNC ConjugateReturnType conjugate() const
Definition: CommonCwiseUnaryOps.h:74
#define EIGEN_NOEXCEPT
Definition: Macros.h:1418
#define EIGEN_CONSTEXPR
Definition: Macros.h:787
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:976
#define eigen_assert(x)
Definition: Macros.h:1037
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:65
Sequence of Householder reflections acting on subspaces with decreasing size.
Definition: HouseholderSequence.h:121
EIGEN_DEVICE_FUNC HouseholderSequence & setLength(Index length)
Sets the length of the Householder sequence.
Definition: HouseholderSequence.h:443
EIGEN_DEVICE_FUNC HouseholderSequence & setShift(Index shift)
Sets the shift of the Householder sequence.
Definition: HouseholderSequence.h:461
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Definition: PlainObjectBase.h:271
Definition: ReturnByValue.h:52
Tridiagonal decomposition of a selfadjoint matrix.
Definition: Tridiagonalization.h:65
HouseholderSequenceType matrixQ() const
Returns the unitary matrix Q in the decomposition.
Definition: Tridiagonalization.h:241
Tridiagonalization(const EigenBase< InputType > &matrix)
Constructor; computes tridiagonal decomposition of given matrix.
Definition: Tridiagonalization.h:131
DiagonalReturnType diagonal() const
Returns the diagonal of the tridiagonal matrix T in the decomposition.
Definition: Tridiagonalization.h:308
@ Size
Definition: Tridiagonalization.h:76
@ MaxSize
Definition: Tridiagonalization.h:79
@ MaxSizeMinusOne
Definition: Tridiagonalization.h:80
@ SizeMinusOne
Definition: Tridiagonalization.h:77
@ Options
Definition: Tridiagonalization.h:78
internal::remove_all< typename MatrixType::RealReturnType >::type MatrixTypeRealView
Definition: Tridiagonalization.h:86
const MatrixType & packedMatrix() const
Returns the internal representation of the decomposition.
Definition: Tridiagonalization.h:220
internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::add_const_on_value_type< typename Diagonal< const MatrixType, -1 >::RealReturnType >::type, const Diagonal< const MatrixType, -1 > >::type SubDiagonalReturnType
Definition: Tridiagonalization.h:97
Matrix< RealScalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > SubDiagonalType
Definition: Tridiagonalization.h:85
MatrixTReturnType matrixT() const
Returns an expression of the tridiagonal matrix T in the decomposition.
Definition: Tridiagonalization.h:266
CoeffVectorType m_hCoeffs
Definition: Tridiagonalization.h:302
Eigen::Index Index
Definition: Tridiagonalization.h:73
NumTraits< Scalar >::Real RealScalar
Definition: Tridiagonalization.h:72
Tridiagonalization(Index size=Size==Dynamic ? 2 :Size)
Default constructor.
Definition: Tridiagonalization.h:114
internal::conditional< NumTraits< Scalar >::IsComplex, typename internal::add_const_on_value_type< typename Diagonal< const MatrixType >::RealReturnType >::type, const Diagonal< const MatrixType > >::type DiagonalReturnType
Definition: Tridiagonalization.h:92
internal::plain_col_type< MatrixType, RealScalar >::type DiagonalType
Definition: Tridiagonalization.h:84
SubDiagonalReturnType subDiagonal() const
Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
Definition: Tridiagonalization.h:316
CoeffVectorType householderCoefficients() const
Returns the Householder coefficients.
Definition: Tridiagonalization.h:183
bool m_isInitialized
Definition: Tridiagonalization.h:303
Tridiagonalization & compute(const EigenBase< InputType > &matrix)
Computes tridiagonal decomposition of given matrix.
Definition: Tridiagonalization.h:158
MatrixType m_matrix
Definition: Tridiagonalization.h:301
Matrix< Scalar, SizeMinusOne, 1, Options &~RowMajor, MaxSizeMinusOne, 1 > CoeffVectorType
Definition: Tridiagonalization.h:83
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition: Tridiagonalization.h:69
HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > HouseholderSequenceType
Return type of matrixQ()
Definition: Tridiagonalization.h:100
MatrixType::Scalar Scalar
Definition: Tridiagonalization.h:71
internal::TridiagonalizationMatrixTReturnType< MatrixTypeRealView > MatrixTReturnType
Definition: Tridiagonalization.h:87
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16() min(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:571
EIGEN_DEVICE_FUNC void tridiagonalization_inplace(MatrixType &matA, CoeffVectorType &hCoeffs)
Definition: Tridiagonalization.h:349
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition: LDLT.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
const int Dynamic
Definition: Constants.h:22
type
The type the bitset is encoded with.
Definition: bitset.hpp:44
Flags
Special flags for archives.
Definition: cereal.hpp:185
Definition: document.h:416
Definition: EigenBase.h:30
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: EigenBase.h:60
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:233
Definition: Tridiagonalization.h:533
MatrixType::Nested m_matrix
Definition: Tridiagonalization.h:554
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: Tridiagonalization.h:551
void evalTo(ResultType &result) const
Definition: Tridiagonalization.h:542
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: Tridiagonalization.h:550
TridiagonalizationMatrixTReturnType(const MatrixType &mat)
Constructor.
Definition: Tridiagonalization.h:539
Definition: Meta.h:109
T type
Definition: Meta.h:126
MatrixType::PlainObject ReturnType
Definition: Tridiagonalization.h:23
Definition: ForwardDeclarations.h:17
MatrixType::Scalar Scalar
Definition: Tridiagonalization.h:512
static EIGEN_DEVICE_FUNC void run(MatrixType &mat, DiagonalType &diag, SubDiagonalType &, CoeffVectorType &, bool extractQ)
Definition: Tridiagonalization.h:516
static void run(MatrixType &mat, DiagonalType &diag, SubDiagonalType &subdiag, CoeffVectorType &, bool extractQ)
Definition: Tridiagonalization.h:470
MatrixType::Scalar Scalar
Definition: Tridiagonalization.h:466
MatrixType::RealScalar RealScalar
Definition: Tridiagonalization.h:467
Definition: Tridiagonalization.h:442
static EIGEN_DEVICE_FUNC void run(MatrixType &mat, DiagonalType &diag, SubDiagonalType &subdiag, CoeffVectorType &hCoeffs, bool extractQ)
Definition: Tridiagonalization.h:447
Tridiagonalization< MatrixType >::CoeffVectorType CoeffVectorType
Definition: Tridiagonalization.h:443
Tridiagonalization< MatrixType >::HouseholderSequenceType HouseholderSequenceType
Definition: Tridiagonalization.h:444
Definition: Meta.h:96
#define const
Definition: zconf.h:233