NDDEM
Public Types | Public Member Functions | Private Types | Private Member Functions | Private Attributes | List of all members
Eigen::RealQZ< _MatrixType > Class Template Reference

Performs a real QZ decomposition of a pair of square matrices. More...

#include <RealQZ.h>

Public Types

enum  {
  RowsAtCompileTime = MatrixType::RowsAtCompileTime , ColsAtCompileTime = MatrixType::ColsAtCompileTime , Options = MatrixType::Options , MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime ,
  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
}
 
typedef _MatrixType MatrixType
 
typedef MatrixType::Scalar Scalar
 
typedef std::complex< typename NumTraits< Scalar >::Real > ComplexScalar
 
typedef Eigen::Index Index
 
typedef Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > EigenvalueType
 
typedef Matrix< Scalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > ColumnVectorType
 

Public Member Functions

 RealQZ (Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
 Default constructor. More...
 
 RealQZ (const MatrixType &A, const MatrixType &B, bool computeQZ=true)
 Constructor; computes real QZ decomposition of given matrices. More...
 
const MatrixTypematrixQ () const
 Returns matrix Q in the QZ decomposition. More...
 
const MatrixTypematrixZ () const
 Returns matrix Z in the QZ decomposition. More...
 
const MatrixTypematrixS () const
 Returns matrix S in the QZ decomposition. More...
 
const MatrixTypematrixT () const
 Returns matrix S in the QZ decomposition. More...
 
RealQZcompute (const MatrixType &A, const MatrixType &B, bool computeQZ=true)
 Computes QZ decomposition of given matrix. More...
 
ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
Index iterations () const
 Returns number of performed QR-like iterations. More...
 
RealQZsetMaxIterations (Index maxIters)
 

Private Types

typedef Matrix< Scalar, 3, 1 > Vector3s
 
typedef Matrix< Scalar, 2, 1 > Vector2s
 
typedef Matrix< Scalar, 2, 2 > Matrix2s
 
typedef JacobiRotation< ScalarJRs
 

Private Member Functions

void hessenbergTriangular ()
 
void computeNorms ()
 
Index findSmallSubdiagEntry (Index iu)
 
Index findSmallDiagEntry (Index f, Index l)
 
void splitOffTwoRows (Index i)
 
void pushDownZero (Index z, Index f, Index l)
 
void step (Index f, Index l, Index iter)
 

Private Attributes

MatrixType m_S
 
MatrixType m_T
 
MatrixType m_Q
 
MatrixType m_Z
 
Matrix< Scalar, Dynamic, 1 > m_workspace
 
ComputationInfo m_info
 
Index m_maxIters
 
bool m_isInitialized
 
bool m_computeQZ
 
Scalar m_normOfT
 
Scalar m_normOfS
 
Index m_global_iter
 

Detailed Description

template<typename _MatrixType>
class Eigen::RealQZ< _MatrixType >

Performs a real QZ decomposition of a pair of square matrices.

\eigenvalues_module

Template Parameters
_MatrixTypethe type of the matrix of which we are computing the real QZ decomposition; this is expected to be an instantiation of the Matrix class template.

Given a real square matrices A and B, this class computes the real QZ decomposition: $ A = Q S Z $, $ B = Q T Z $ where Q and Z are real orthogonal matrixes, T is upper-triangular matrix, and S is upper quasi-triangular matrix. An orthogonal matrix is a matrix whose inverse is equal to its transpose, $ U^{-1} = U^T $. A quasi-triangular matrix is a block-triangular matrix whose diagonal consists of 1-by-1 blocks and 2-by-2 blocks where further reduction is impossible due to complex eigenvalues.

The eigenvalues of the pencil $ A - z B $ can be obtained from 1x1 and 2x2 blocks on the diagonals of S and T.

Call the function compute() to compute the real QZ decomposition of a given pair of matrices. Alternatively, you can use the RealQZ(const MatrixType& B, const MatrixType& B, bool computeQZ) constructor which computes the real QZ decomposition at construction time. Once the decomposition is computed, you can use the matrixS(), matrixT(), matrixQ() and matrixZ() functions to retrieve the matrices S, T, Q and Z in the decomposition. If computeQZ==false, some time is saved by not computing matrices Q and Z.

Example:

Output:

Note
The implementation is based on the algorithm in "Matrix Computations" by Gene H. Golub and Charles F. Van Loan, and a paper "An algorithm for generalized eigenvalue problems" by C.B.Moler and G.W.Stewart.
See also
class RealSchur, class ComplexSchur, class EigenSolver, class ComplexEigenSolver

Member Typedef Documentation

◆ ColumnVectorType

template<typename _MatrixType >
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> Eigen::RealQZ< _MatrixType >::ColumnVectorType

◆ ComplexScalar

template<typename _MatrixType >
typedef std::complex<typename NumTraits<Scalar>::Real> Eigen::RealQZ< _MatrixType >::ComplexScalar

◆ EigenvalueType

template<typename _MatrixType >
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> Eigen::RealQZ< _MatrixType >::EigenvalueType

◆ Index

template<typename _MatrixType >
typedef Eigen::Index Eigen::RealQZ< _MatrixType >::Index
Deprecated:
since Eigen 3.3

◆ JRs

template<typename _MatrixType >
typedef JacobiRotation<Scalar> Eigen::RealQZ< _MatrixType >::JRs
private

◆ Matrix2s

template<typename _MatrixType >
typedef Matrix<Scalar,2,2> Eigen::RealQZ< _MatrixType >::Matrix2s
private

◆ MatrixType

template<typename _MatrixType >
typedef _MatrixType Eigen::RealQZ< _MatrixType >::MatrixType

◆ Scalar

template<typename _MatrixType >
typedef MatrixType::Scalar Eigen::RealQZ< _MatrixType >::Scalar

◆ Vector2s

template<typename _MatrixType >
typedef Matrix<Scalar,2,1> Eigen::RealQZ< _MatrixType >::Vector2s
private

◆ Vector3s

template<typename _MatrixType >
typedef Matrix<Scalar,3,1> Eigen::RealQZ< _MatrixType >::Vector3s
private

Member Enumeration Documentation

◆ anonymous enum

template<typename _MatrixType >
anonymous enum
Enumerator
RowsAtCompileTime 
ColsAtCompileTime 
Options 
MaxRowsAtCompileTime 
MaxColsAtCompileTime 

Constructor & Destructor Documentation

◆ RealQZ() [1/2]

template<typename _MatrixType >
Eigen::RealQZ< _MatrixType >::RealQZ ( Index  size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
inlineexplicit

Default constructor.

Parameters
[in]sizePositive integer, size of the matrix whose QZ decomposition will be computed.

The default constructor is useful in cases in which the user intends to perform decompositions via compute(). The size parameter is only used as a hint. It is not an error to give a wrong size, but it may impair performance.

See also
compute() for an example.

◆ RealQZ() [2/2]

template<typename _MatrixType >
Eigen::RealQZ< _MatrixType >::RealQZ ( const MatrixType A,
const MatrixType B,
bool  computeQZ = true 
)
inline

Constructor; computes real QZ decomposition of given matrices.

Parameters
[in]AMatrix A.
[in]BMatrix B.
[in]computeQZIf false, A and Z are not computed.

This constructor calls compute() to compute the QZ decomposition.

Member Function Documentation

◆ compute()

template<typename MatrixType >
RealQZ< MatrixType > & Eigen::RealQZ< MatrixType >::compute ( const MatrixType A,
const MatrixType B,
bool  computeQZ = true 
)

Computes QZ decomposition of given matrix.

Parameters
[in]AMatrix A.
[in]BMatrix B.
[in]computeQZIf false, A and Z are not computed.
Returns
Reference to *this

◆ computeNorms()

template<typename MatrixType >
void Eigen::RealQZ< MatrixType >::computeNorms
inlineprivate

◆ findSmallDiagEntry()

template<typename MatrixType >
Index Eigen::RealQZ< MatrixType >::findSmallDiagEntry ( Index  f,
Index  l 
)
inlineprivate

◆ findSmallSubdiagEntry()

template<typename MatrixType >
Index Eigen::RealQZ< MatrixType >::findSmallSubdiagEntry ( Index  iu)
inlineprivate

◆ hessenbergTriangular()

template<typename MatrixType >
void Eigen::RealQZ< MatrixType >::hessenbergTriangular
private

◆ info()

template<typename _MatrixType >
ComputationInfo Eigen::RealQZ< _MatrixType >::info ( ) const
inline

Reports whether previous computation was successful.

Returns
Success if computation was successful, NoConvergence otherwise.

◆ iterations()

template<typename _MatrixType >
Index Eigen::RealQZ< _MatrixType >::iterations ( ) const
inline

Returns number of performed QR-like iterations.

◆ matrixQ()

template<typename _MatrixType >
const MatrixType& Eigen::RealQZ< _MatrixType >::matrixQ ( ) const
inline

Returns matrix Q in the QZ decomposition.

Returns
A const reference to the matrix Q.

◆ matrixS()

template<typename _MatrixType >
const MatrixType& Eigen::RealQZ< _MatrixType >::matrixS ( ) const
inline

Returns matrix S in the QZ decomposition.

Returns
A const reference to the matrix S.

◆ matrixT()

template<typename _MatrixType >
const MatrixType& Eigen::RealQZ< _MatrixType >::matrixT ( ) const
inline

Returns matrix S in the QZ decomposition.

Returns
A const reference to the matrix S.

◆ matrixZ()

template<typename _MatrixType >
const MatrixType& Eigen::RealQZ< _MatrixType >::matrixZ ( ) const
inline

Returns matrix Z in the QZ decomposition.

Returns
A const reference to the matrix Z.

◆ pushDownZero()

template<typename MatrixType >
void Eigen::RealQZ< MatrixType >::pushDownZero ( Index  z,
Index  f,
Index  l 
)
inlineprivate

◆ setMaxIterations()

template<typename _MatrixType >
RealQZ& Eigen::RealQZ< _MatrixType >::setMaxIterations ( Index  maxIters)
inline

Sets the maximal number of iterations allowed to converge to one eigenvalue or decouple the problem.

◆ splitOffTwoRows()

template<typename MatrixType >
void Eigen::RealQZ< MatrixType >::splitOffTwoRows ( Index  i)
inlineprivate

◆ step()

template<typename MatrixType >
void Eigen::RealQZ< MatrixType >::step ( Index  f,
Index  l,
Index  iter 
)
inlineprivate

Member Data Documentation

◆ m_computeQZ

template<typename _MatrixType >
bool Eigen::RealQZ< _MatrixType >::m_computeQZ
private

◆ m_global_iter

template<typename _MatrixType >
Index Eigen::RealQZ< _MatrixType >::m_global_iter
private

◆ m_info

template<typename _MatrixType >
ComputationInfo Eigen::RealQZ< _MatrixType >::m_info
private

◆ m_isInitialized

template<typename _MatrixType >
bool Eigen::RealQZ< _MatrixType >::m_isInitialized
private

◆ m_maxIters

template<typename _MatrixType >
Index Eigen::RealQZ< _MatrixType >::m_maxIters
private

◆ m_normOfS

template<typename _MatrixType >
Scalar Eigen::RealQZ< _MatrixType >::m_normOfS
private

◆ m_normOfT

template<typename _MatrixType >
Scalar Eigen::RealQZ< _MatrixType >::m_normOfT
private

◆ m_Q

template<typename _MatrixType >
MatrixType Eigen::RealQZ< _MatrixType >::m_Q
private

◆ m_S

template<typename _MatrixType >
MatrixType Eigen::RealQZ< _MatrixType >::m_S
private

◆ m_T

template<typename _MatrixType >
MatrixType Eigen::RealQZ< _MatrixType >::m_T
private

◆ m_workspace

template<typename _MatrixType >
Matrix<Scalar,Dynamic,1> Eigen::RealQZ< _MatrixType >::m_workspace
private

◆ m_Z

template<typename _MatrixType >
MatrixType Eigen::RealQZ< _MatrixType >::m_Z
private

The documentation for this class was generated from the following file: