NDDEM
|
Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...
#include <ColPivHouseholderQR.h>
Protected Member Functions | |
void | computeInPlace () |
![]() | |
void | _check_solve_assertion (const Rhs &b) const |
Static Protected Member Functions | |
static void | check_template_parameters () |
Protected Attributes | |
MatrixType | m_qr |
HCoeffsType | m_hCoeffs |
PermutationType | m_colsPermutation |
IntRowVectorType | m_colsTranspositions |
RowVectorType | m_temp |
RealRowVectorType | m_colNormsUpdated |
RealRowVectorType | m_colNormsDirect |
bool | m_isInitialized |
bool | m_usePrescribedThreshold |
RealScalar | m_prescribedThreshold |
RealScalar | m_maxpivot |
Index | m_nonzero_pivots |
Index | m_det_pq |
Private Types | |
typedef PermutationType::StorageIndex | PermIndexType |
Friends | |
class | SolverBase< ColPivHouseholderQR > |
class | CompleteOrthogonalDecomposition< MatrixType > |
Householder rank-revealing QR decomposition of a matrix with column-pivoting.
_MatrixType | the type of the matrix of which we are computing the QR decomposition |
This class performs a rank-revealing QR decomposition of a matrix A into matrices P, Q and R such that
by using Householder transformations. Here, P is a permutation matrix, Q a unitary matrix and R an upper triangular matrix.
This decomposition performs column pivoting in order to be rank-revealing and improve numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
This class supports the inplace decomposition mechanism.
typedef SolverBase<ColPivHouseholderQR> Eigen::ColPivHouseholderQR< _MatrixType >::Base |
typedef internal::plain_diag_type<MatrixType>::type Eigen::ColPivHouseholderQR< _MatrixType >::HCoeffsType |
typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> Eigen::ColPivHouseholderQR< _MatrixType >::HouseholderSequenceType |
typedef internal::plain_row_type<MatrixType, Index>::type Eigen::ColPivHouseholderQR< _MatrixType >::IntRowVectorType |
typedef _MatrixType Eigen::ColPivHouseholderQR< _MatrixType >::MatrixType |
|
private |
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> Eigen::ColPivHouseholderQR< _MatrixType >::PermutationType |
typedef MatrixType::PlainObject Eigen::ColPivHouseholderQR< _MatrixType >::PlainObject |
typedef internal::plain_row_type<MatrixType, RealScalar>::type Eigen::ColPivHouseholderQR< _MatrixType >::RealRowVectorType |
typedef internal::plain_row_type<MatrixType>::type Eigen::ColPivHouseholderQR< _MatrixType >::RowVectorType |
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
|
inlineexplicit |
|
inlineexplicit |
Constructs a QR factorization from a given matrix.
This overloaded constructor is provided for inplace decomposition when MatrixType
is a Eigen::Ref.
void Eigen::ColPivHouseholderQR< _MatrixType >::_solve_impl | ( | const RhsType & | rhs, |
DstType & | dst | ||
) | const |
void Eigen::ColPivHouseholderQR< _MatrixType >::_solve_impl_transposed | ( | const RhsType & | rhs, |
DstType & | dst | ||
) | const |
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::absDeterminant |
|
inlinestaticprotected |
|
inline |
|
inline |
ColPivHouseholderQR& Eigen::ColPivHouseholderQR< _MatrixType >::compute | ( | const EigenBase< InputType > & | matrix | ) |
ColPivHouseholderQR<MatrixType>& Eigen::ColPivHouseholderQR< _MatrixType >::compute | ( | const EigenBase< InputType > & | matrix | ) |
Performs the QR factorization of the given matrix matrix. The result of the factorization is stored into *this
, and a reference to *this
is returned.
|
protected |
|
inline |
|
inline |
Q
.For advanced uses only.
ColPivHouseholderQR< MatrixType >::HouseholderSequenceType Eigen::ColPivHouseholderQR< MatrixType >::householderQ |
|
inline |
Reports whether the QR factorization was successful.
Success
. It is provided for compatibility with other factorization routines. Success
|
inline |
|
inline |
|
inline |
|
inline |
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::logAbsDeterminant |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. This is not used for the QR decomposition itself.
When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.
threshold | The new value to use as the threshold. |
A pivot will be considered nonzero if its absolute value is strictly greater than where maxpivot is the biggest pivot.
If you want to come back to the default behavior, call setThreshold(Default_t)
|
inline |
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.
You should pass the special object Eigen::Default as parameter here.
See the documentation of setThreshold(const RealScalar&).
|
inline |
Returns the threshold that will be used by certain methods such as rank().
See the documentation of setThreshold(const RealScalar&).
|
friend |
|
friend |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |
|
protected |