NDDEM
BDCSVD.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
5 // research report written by Ming Gu and Stanley C.Eisenstat
6 // The code variable names correspond to the names they used in their
7 // report
8 //
9 // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
10 // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
11 // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
12 // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
13 // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
14 // Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr>
15 //
16 // Source Code Form is subject to the terms of the Mozilla
17 // Public License v. 2.0. If a copy of the MPL was not distributed
18 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
19 
20 #ifndef EIGEN_BDCSVD_H
21 #define EIGEN_BDCSVD_H
22 // #define EIGEN_BDCSVD_DEBUG_VERBOSE
23 // #define EIGEN_BDCSVD_SANITY_CHECKS
24 
25 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
26 #undef eigen_internal_assert
27 #define eigen_internal_assert(X) assert(X);
28 #endif
29 
30 namespace Eigen {
31 
32 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
33 IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]");
34 #endif
35 
36 template<typename _MatrixType> class BDCSVD;
37 
38 namespace internal {
39 
40 template<typename _MatrixType>
41 struct traits<BDCSVD<_MatrixType> >
42  : traits<_MatrixType>
43 {
44  typedef _MatrixType MatrixType;
45 };
46 
47 } // end namespace internal
48 
49 
72 template<typename _MatrixType>
73 class BDCSVD : public SVDBase<BDCSVD<_MatrixType> >
74 {
76 
77 public:
78  using Base::rows;
79  using Base::cols;
80  using Base::computeU;
81  using Base::computeV;
82 
83  typedef _MatrixType MatrixType;
84  typedef typename MatrixType::Scalar Scalar;
87  enum {
88  RowsAtCompileTime = MatrixType::RowsAtCompileTime,
89  ColsAtCompileTime = MatrixType::ColsAtCompileTime,
91  MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
92  MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
94  MatrixOptions = MatrixType::Options
95  };
96 
97  typedef typename Base::MatrixUType MatrixUType;
98  typedef typename Base::MatrixVType MatrixVType;
100 
108 
114  BDCSVD() : m_algoswap(16), m_isTranspose(false), m_compU(false), m_compV(false), m_numIters(0)
115  {}
116 
117 
124  BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
125  : m_algoswap(16), m_numIters(0)
126  {
127  allocate(rows, cols, computationOptions);
128  }
129 
140  BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
141  : m_algoswap(16), m_numIters(0)
142  {
143  compute(matrix, computationOptions);
144  }
145 
147  {
148  }
149 
160  BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions);
161 
168  BDCSVD& compute(const MatrixType& matrix)
169  {
170  return compute(matrix, this->m_computationOptions);
171  }
172 
173  void setSwitchSize(int s)
174  {
175  eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
176  m_algoswap = s;
177  }
178 
179 private:
180  void allocate(Index rows, Index cols, unsigned int computationOptions);
181  void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift);
182  void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V);
183  void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus);
184  void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat);
185  void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V);
186  void deflation43(Index firstCol, Index shift, Index i, Index size);
187  void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
188  void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
189  template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
190  void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
192  static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift);
193 
194 protected:
202 
204  using Base::m_diagSize;
205  using Base::m_computeFullU;
206  using Base::m_computeFullV;
207  using Base::m_computeThinU;
208  using Base::m_computeThinV;
209  using Base::m_matrixU;
210  using Base::m_matrixV;
211  using Base::m_info;
212  using Base::m_isInitialized;
214 
215 public:
217 }; //end class BDCSVD
218 
219 
220 // Method to allocate and initialize matrix and attributes
221 template<typename MatrixType>
222 void BDCSVD<MatrixType>::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions)
223 {
224  m_isTranspose = (cols > rows);
225 
226  if (Base::allocate(rows, cols, computationOptions))
227  return;
228 
229  m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
230  m_compU = computeV();
231  m_compV = computeU();
232  if (m_isTranspose)
233  std::swap(m_compU, m_compV);
234 
235  if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
236  else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
237 
238  if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
239 
240  m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3);
241  m_workspaceI.resize(3*m_diagSize);
242 }// end allocate
243 
244 template<typename MatrixType>
245 BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
246 {
247 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
248  std::cout << "\n\n\n======================================================================================================================\n\n\n";
249 #endif
250  allocate(matrix.rows(), matrix.cols(), computationOptions);
251  using std::abs;
252 
253  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
254 
255  //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return
256  if(matrix.cols() < m_algoswap)
257  {
258  // FIXME this line involves temporaries
259  JacobiSVD<MatrixType> jsvd(matrix,computationOptions);
260  m_isInitialized = true;
261  m_info = jsvd.info();
262  if (m_info == Success || m_info == NoConvergence) {
263  if(computeU()) m_matrixU = jsvd.matrixU();
264  if(computeV()) m_matrixV = jsvd.matrixV();
265  m_singularValues = jsvd.singularValues();
266  m_nonzeroSingularValues = jsvd.nonzeroSingularValues();
267  }
268  return *this;
269  }
270 
271  //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows
272  RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
273  if (!(numext::isfinite)(scale)) {
274  m_isInitialized = true;
275  m_info = InvalidInput;
276  return *this;
277  }
278 
279  if(scale==Literal(0)) scale = Literal(1);
280  MatrixX copy;
281  if (m_isTranspose) copy = matrix.adjoint()/scale;
282  else copy = matrix/scale;
283 
284  //**** step 1 - Bidiagonalization
285  // FIXME this line involves temporaries
287 
288  //**** step 2 - Divide & Conquer
289  m_naiveU.setZero();
290  m_naiveV.setZero();
291  // FIXME this line involves a temporary matrix
292  m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
293  m_computed.template bottomRows<1>().setZero();
294  divide(0, m_diagSize - 1, 0, 0, 0);
295  if (m_info != Success && m_info != NoConvergence) {
296  m_isInitialized = true;
297  return *this;
298  }
299 
300  //**** step 3 - Copy singular values and vectors
301  for (int i=0; i<m_diagSize; i++)
302  {
303  RealScalar a = abs(m_computed.coeff(i, i));
304  m_singularValues.coeffRef(i) = a * scale;
305  if (a<considerZero)
306  {
307  m_nonzeroSingularValues = i;
308  m_singularValues.tail(m_diagSize - i - 1).setZero();
309  break;
310  }
311  else if (i == m_diagSize - 1)
312  {
313  m_nonzeroSingularValues = i + 1;
314  break;
315  }
316  }
317 
318 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
319 // std::cout << "m_naiveU\n" << m_naiveU << "\n\n";
320 // std::cout << "m_naiveV\n" << m_naiveV << "\n\n";
321 #endif
322  if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
323  else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
324 
325  m_isInitialized = true;
326  return *this;
327 }// end compute
328 
329 
330 template<typename MatrixType>
331 template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
332 void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
333 {
334  // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
335  if (computeU())
336  {
337  Index Ucols = m_computeThinU ? m_diagSize : householderU.cols();
338  m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
339  m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
340  householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer
341  }
342  if (computeV())
343  {
344  Index Vcols = m_computeThinV ? m_diagSize : householderV.cols();
345  m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
346  m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize);
347  householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer
348  }
349 }
350 
359 template<typename MatrixType>
361 {
362  Index n = A.rows();
363  if(n>100)
364  {
365  // If the matrices are large enough, let's exploit the sparse structure of A by
366  // splitting it in half (wrt n1), and packing the non-zero columns.
367  Index n2 = n - n1;
368  Map<MatrixXr> A1(m_workspace.data() , n1, n);
369  Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n);
370  Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n);
371  Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n);
372  Index k1=0, k2=0;
373  for(Index j=0; j<n; ++j)
374  {
375  if( (A.col(j).head(n1).array()!=Literal(0)).any() )
376  {
377  A1.col(k1) = A.col(j).head(n1);
378  B1.row(k1) = B.row(j);
379  ++k1;
380  }
381  if( (A.col(j).tail(n2).array()!=Literal(0)).any() )
382  {
383  A2.col(k2) = A.col(j).tail(n2);
384  B2.row(k2) = B.row(j);
385  ++k2;
386  }
387  }
388 
389  A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1);
390  A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2);
391  }
392  else
393  {
394  Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n);
395  tmp.noalias() = A*B;
396  A = tmp;
397  }
398 }
399 
400 // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
401 // place of the submatrix we are currently working on.
402 
403 //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
404 //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
405 // lastCol + 1 - firstCol is the size of the submatrix.
406 //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
407 //@param firstRowW : Same as firstRowW with the column.
408 //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
409 // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
410 template<typename MatrixType>
411 void BDCSVD<MatrixType>::divide(Eigen::Index firstCol, Eigen::Index lastCol, Eigen::Index firstRowW, Eigen::Index firstColW, Eigen::Index shift)
412 {
413  // requires rows = cols + 1;
414  using std::pow;
415  using std::sqrt;
416  using std::abs;
417  const Index n = lastCol - firstCol + 1;
418  const Index k = n/2;
419  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
420  RealScalar alphaK;
421  RealScalar betaK;
422  RealScalar r0;
423  RealScalar lambda, phi, c0, s0;
424  VectorType l, f;
425  // We use the other algorithm which is more efficient for small
426  // matrices.
427  if (n < m_algoswap)
428  {
429  // FIXME this line involves temporaries
430  JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0));
431  m_info = b.info();
432  if (m_info != Success && m_info != NoConvergence) return;
433  if (m_compU)
434  m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
435  else
436  {
437  m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
438  m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
439  }
440  if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
441  m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
442  m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
443  return;
444  }
445  // We use the divide and conquer algorithm
446  alphaK = m_computed(firstCol + k, firstCol + k);
447  betaK = m_computed(firstCol + k + 1, firstCol + k);
448  // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
449  // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
450  // right submatrix before the left one.
451  divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
452  if (m_info != Success && m_info != NoConvergence) return;
453  divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
454  if (m_info != Success && m_info != NoConvergence) return;
455 
456  if (m_compU)
457  {
458  lambda = m_naiveU(firstCol + k, firstCol + k);
459  phi = m_naiveU(firstCol + k + 1, lastCol + 1);
460  }
461  else
462  {
463  lambda = m_naiveU(1, firstCol + k);
464  phi = m_naiveU(0, lastCol + 1);
465  }
466  r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
467  if (m_compU)
468  {
469  l = m_naiveU.row(firstCol + k).segment(firstCol, k);
470  f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
471  }
472  else
473  {
474  l = m_naiveU.row(1).segment(firstCol, k);
475  f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
476  }
477  if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1);
478  if (r0<considerZero)
479  {
480  c0 = Literal(1);
481  s0 = Literal(0);
482  }
483  else
484  {
485  c0 = alphaK * lambda / r0;
486  s0 = betaK * phi / r0;
487  }
488 
489 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
490  assert(m_naiveU.allFinite());
491  assert(m_naiveV.allFinite());
492  assert(m_computed.allFinite());
493 #endif
494 
495  if (m_compU)
496  {
497  MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
498  // we shiftW Q1 to the right
499  for (Index i = firstCol + k - 1; i >= firstCol; i--)
500  m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
501  // we shift q1 at the left with a factor c0
502  m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
503  // last column = q1 * - s0
504  m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
505  // first column = q2 * s0
506  m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
507  // q2 *= c0
508  m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
509  }
510  else
511  {
512  RealScalar q1 = m_naiveU(0, firstCol + k);
513  // we shift Q1 to the right
514  for (Index i = firstCol + k - 1; i >= firstCol; i--)
515  m_naiveU(0, i + 1) = m_naiveU(0, i);
516  // we shift q1 at the left with a factor c0
517  m_naiveU(0, firstCol) = (q1 * c0);
518  // last column = q1 * - s0
519  m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
520  // first column = q2 * s0
521  m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
522  // q2 *= c0
523  m_naiveU(1, lastCol + 1) *= c0;
524  m_naiveU.row(1).segment(firstCol + 1, k).setZero();
525  m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
526  }
527 
528 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
529  assert(m_naiveU.allFinite());
530  assert(m_naiveV.allFinite());
531  assert(m_computed.allFinite());
532 #endif
533 
534  m_computed(firstCol + shift, firstCol + shift) = r0;
535  m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
536  m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
537 
538 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
539  ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
540 #endif
541  // Second part: try to deflate singular values in combined matrix
542  deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
543 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
544  ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues();
545  std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n";
546  std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n";
547  std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n";
548  static int count = 0;
549  std::cout << "# " << ++count << "\n\n";
550  assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm());
551 // assert(count<681);
552 // assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all());
553 #endif
554 
555  // Third part: compute SVD of combined matrix
556  MatrixXr UofSVD, VofSVD;
557  VectorType singVals;
558  computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
559 
560 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
561  assert(UofSVD.allFinite());
562  assert(VofSVD.allFinite());
563 #endif
564 
565  if (m_compU)
566  structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2);
567  else
568  {
569  Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1);
570  tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD;
571  m_naiveU.middleCols(firstCol, n + 1) = tmp;
572  }
573 
574  if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2);
575 
576 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
577  assert(m_naiveU.allFinite());
578  assert(m_naiveV.allFinite());
579  assert(m_computed.allFinite());
580 #endif
581 
582  m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
583  m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
584 }// end divide
585 
586 // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
587 // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
588 // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
589 // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
590 //
591 // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
592 // handling of round-off errors, be consistent in ordering
593 // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf
594 template <typename MatrixType>
596 {
597  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
598  using std::abs;
599  ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n);
600  m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal();
601  ArrayRef diag = m_workspace.head(n);
602  diag(0) = Literal(0);
603 
604  // Allocate space for singular values and vectors
605  singVals.resize(n);
606  U.resize(n+1, n+1);
607  if (m_compV) V.resize(n, n);
608 
609 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
610  if (col0.hasNaN() || diag.hasNaN())
611  std::cout << "\n\nHAS NAN\n\n";
612 #endif
613 
614  // Many singular values might have been deflated, the zero ones have been moved to the end,
615  // but others are interleaved and we must ignore them at this stage.
616  // To this end, let's compute a permutation skipping them:
617  Index actual_n = n;
618  while(actual_n>1 && diag(actual_n-1)==Literal(0)) {--actual_n; eigen_internal_assert(col0(actual_n)==Literal(0)); }
619  Index m = 0; // size of the deflated problem
620  for(Index k=0;k<actual_n;++k)
621  if(abs(col0(k))>considerZero)
622  m_workspaceI(m++) = k;
623  Map<ArrayXi> perm(m_workspaceI.data(),m);
624 
625  Map<ArrayXr> shifts(m_workspace.data()+1*n, n);
626  Map<ArrayXr> mus(m_workspace.data()+2*n, n);
627  Map<ArrayXr> zhat(m_workspace.data()+3*n, n);
628 
629 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
630  std::cout << "computeSVDofM using:\n";
631  std::cout << " z: " << col0.transpose() << "\n";
632  std::cout << " d: " << diag.transpose() << "\n";
633 #endif
634 
635  // Compute singVals, shifts, and mus
636  computeSingVals(col0, diag, perm, singVals, shifts, mus);
637 
638 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
639  std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n";
640  std::cout << " sing-val: " << singVals.transpose() << "\n";
641  std::cout << " mu: " << mus.transpose() << "\n";
642  std::cout << " shift: " << shifts.transpose() << "\n";
643 
644  {
645  std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n";
646  std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n";
647  assert((((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n) >= 0).all());
648  std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n";
649  assert((((singVals.array()-diag) / singVals.array()).head(actual_n) >= 0).all());
650  }
651 #endif
652 
653 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
654  assert(singVals.allFinite());
655  assert(mus.allFinite());
656  assert(shifts.allFinite());
657 #endif
658 
659  // Compute zhat
660  perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat);
661 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
662  std::cout << " zhat: " << zhat.transpose() << "\n";
663 #endif
664 
665 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
666  assert(zhat.allFinite());
667 #endif
668 
669  computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V);
670 
671 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
672  std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n";
673  std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n";
674 #endif
675 
676 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
677  assert(m_naiveU.allFinite());
678  assert(m_naiveV.allFinite());
679  assert(m_computed.allFinite());
680  assert(U.allFinite());
681  assert(V.allFinite());
682 // assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
683 // assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 100*NumTraits<RealScalar>::epsilon() * n);
684 #endif
685 
686  // Because of deflation, the singular values might not be completely sorted.
687  // Fortunately, reordering them is a O(n) problem
688  for(Index i=0; i<actual_n-1; ++i)
689  {
690  if(singVals(i)>singVals(i+1))
691  {
692  using std::swap;
693  swap(singVals(i),singVals(i+1));
694  U.col(i).swap(U.col(i+1));
695  if(m_compV) V.col(i).swap(V.col(i+1));
696  }
697  }
698 
699 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
700  {
701  bool singular_values_sorted = (((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).array() >= 0).all();
702  if(!singular_values_sorted)
703  std::cout << "Singular values are not sorted: " << singVals.segment(1,actual_n).transpose() << "\n";
704  assert(singular_values_sorted);
705  }
706 #endif
707 
708  // Reverse order so that singular values in increased order
709  // Because of deflation, the zeros singular-values are already at the end
710  singVals.head(actual_n).reverseInPlace();
711  U.leftCols(actual_n).rowwise().reverseInPlace();
712  if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace();
713 
714 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
715  JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) );
716  std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n";
717  std::cout << " * sing-val: " << singVals.transpose() << "\n";
718 // std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n";
719 #endif
720 }
721 
722 template <typename MatrixType>
723 typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift)
724 {
725  Index m = perm.size();
726  RealScalar res = Literal(1);
727  for(Index i=0; i<m; ++i)
728  {
729  Index j = perm(i);
730  // The following expression could be rewritten to involve only a single division,
731  // but this would make the expression more sensitive to overflow.
732  res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu));
733  }
734  return res;
735 
736 }
737 
738 template <typename MatrixType>
739 void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm,
740  VectorType& singVals, ArrayRef shifts, ArrayRef mus)
741 {
742  using std::abs;
743  using std::swap;
744  using std::sqrt;
745 
746  Index n = col0.size();
747  Index actual_n = n;
748  // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above
749  // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value.
750  while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n;
751 
752  for (Index k = 0; k < n; ++k)
753  {
754  if (col0(k) == Literal(0) || actual_n==1)
755  {
756  // if col0(k) == 0, then entry is deflated, so singular value is on diagonal
757  // if actual_n==1, then the deflated problem is already diagonalized
758  singVals(k) = k==0 ? col0(0) : diag(k);
759  mus(k) = Literal(0);
760  shifts(k) = k==0 ? col0(0) : diag(k);
761  continue;
762  }
763 
764  // otherwise, use secular equation to find singular value
765  RealScalar left = diag(k);
766  RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm());
767  if(k==actual_n-1)
768  right = (diag(actual_n-1) + col0.matrix().norm());
769  else
770  {
771  // Skip deflated singular values,
772  // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside.
773  // This should be equivalent to using perm[]
774  Index l = k+1;
775  while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); }
776  right = diag(l);
777  }
778 
779  // first decide whether it's closer to the left end or the right end
780  RealScalar mid = left + (right-left) / Literal(2);
781  RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0));
782 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
783  std::cout << "right-left = " << right-left << "\n";
784 // std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, ArrayXr(diag-left), left)
785 // << " " << secularEq(mid-right, col0, diag, perm, ArrayXr(diag-right), right) << "\n";
786  std::cout << " = " << secularEq(left+RealScalar(0.000001)*(right-left), col0, diag, perm, diag, 0)
787  << " " << secularEq(left+RealScalar(0.1) *(right-left), col0, diag, perm, diag, 0)
788  << " " << secularEq(left+RealScalar(0.2) *(right-left), col0, diag, perm, diag, 0)
789  << " " << secularEq(left+RealScalar(0.3) *(right-left), col0, diag, perm, diag, 0)
790  << " " << secularEq(left+RealScalar(0.4) *(right-left), col0, diag, perm, diag, 0)
791  << " " << secularEq(left+RealScalar(0.49) *(right-left), col0, diag, perm, diag, 0)
792  << " " << secularEq(left+RealScalar(0.5) *(right-left), col0, diag, perm, diag, 0)
793  << " " << secularEq(left+RealScalar(0.51) *(right-left), col0, diag, perm, diag, 0)
794  << " " << secularEq(left+RealScalar(0.6) *(right-left), col0, diag, perm, diag, 0)
795  << " " << secularEq(left+RealScalar(0.7) *(right-left), col0, diag, perm, diag, 0)
796  << " " << secularEq(left+RealScalar(0.8) *(right-left), col0, diag, perm, diag, 0)
797  << " " << secularEq(left+RealScalar(0.9) *(right-left), col0, diag, perm, diag, 0)
798  << " " << secularEq(left+RealScalar(0.999999)*(right-left), col0, diag, perm, diag, 0) << "\n";
799 #endif
800  RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right;
801 
802  // measure everything relative to shift
803  Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n);
804  diagShifted = diag - shift;
805 
806  if(k!=actual_n-1)
807  {
808  // check that after the shift, f(mid) is still negative:
809  RealScalar midShifted = (right - left) / RealScalar(2);
810  if(shift==right)
811  midShifted = -midShifted;
812  RealScalar fMidShifted = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
813  if(fMidShifted>0)
814  {
815  // fMid was erroneous, fix it:
816  shift = fMidShifted > Literal(0) ? left : right;
817  diagShifted = diag - shift;
818  }
819  }
820 
821  // initial guess
822  RealScalar muPrev, muCur;
823  if (shift == left)
824  {
825  muPrev = (right - left) * RealScalar(0.1);
826  if (k == actual_n-1) muCur = right - left;
827  else muCur = (right - left) * RealScalar(0.5);
828  }
829  else
830  {
831  muPrev = -(right - left) * RealScalar(0.1);
832  muCur = -(right - left) * RealScalar(0.5);
833  }
834 
835  RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift);
836  RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift);
837  if (abs(fPrev) < abs(fCur))
838  {
839  swap(fPrev, fCur);
840  swap(muPrev, muCur);
841  }
842 
843  // rational interpolation: fit a function of the form a / mu + b through the two previous
844  // iterates and use its zero to compute the next iterate
845  bool useBisection = fPrev*fCur>Literal(0);
846  while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection)
847  {
848  ++m_numIters;
849 
850  // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples.
851  RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev);
852  RealScalar b = fCur - a / muCur;
853  // And find mu such that f(mu)==0:
854  RealScalar muZero = -a/b;
855  RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift);
856 
857 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
858  assert((numext::isfinite)(fZero));
859 #endif
860 
861  muPrev = muCur;
862  fPrev = fCur;
863  muCur = muZero;
864  fCur = fZero;
865 
866  if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true;
867  if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true;
868  if (abs(fCur)>abs(fPrev)) useBisection = true;
869  }
870 
871  // fall back on bisection method if rational interpolation did not work
872  if (useBisection)
873  {
874 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
875  std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n";
876 #endif
877  RealScalar leftShifted, rightShifted;
878  if (shift == left)
879  {
880  // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)),
881  // the factor 2 is to be more conservative
882  leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
883 
884  // check that we did it right:
885  eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) );
886  // I don't understand why the case k==0 would be special there:
887  // if (k == 0) rightShifted = right - left; else
888  rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe
889  }
890  else
891  {
892  leftShifted = -(right - left) * RealScalar(0.51);
893  if(k+1<n)
894  rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) );
895  else
896  rightShifted = -(std::numeric_limits<RealScalar>::min)();
897  }
898 
899  RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift);
900  eigen_internal_assert(fLeft<Literal(0));
901 
902 #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_SANITY_CHECKS
903  RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift);
904 #endif
905 
906 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
907  if(!(numext::isfinite)(fLeft))
908  std::cout << "f(" << leftShifted << ") =" << fLeft << " ; " << left << " " << shift << " " << right << "\n";
909  assert((numext::isfinite)(fLeft));
910 
911  if(!(numext::isfinite)(fRight))
912  std::cout << "f(" << rightShifted << ") =" << fRight << " ; " << left << " " << shift << " " << right << "\n";
913  // assert((numext::isfinite)(fRight));
914 #endif
915 
916 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
917  if(!(fLeft * fRight<0))
918  {
919  std::cout << "f(leftShifted) using leftShifted=" << leftShifted << " ; diagShifted(1:10):" << diagShifted.head(10).transpose() << "\n ; "
920  << "left==shift=" << bool(left==shift) << " ; left-shift = " << (left-shift) << "\n";
921  std::cout << "k=" << k << ", " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; "
922  << "[" << left << " .. " << right << "] -> [" << leftShifted << " " << rightShifted << "], shift=" << shift
923  << " , f(right)=" << secularEq(0, col0, diag, perm, diagShifted, shift)
924  << " == " << secularEq(right, col0, diag, perm, diag, 0) << " == " << fRight << "\n";
925  }
926 #endif
927  eigen_internal_assert(fLeft * fRight < Literal(0));
928 
929  if(fLeft<Literal(0))
930  {
931  while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted)))
932  {
933  RealScalar midShifted = (leftShifted + rightShifted) / Literal(2);
934  fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift);
936 
937  if (fLeft * fMid < Literal(0))
938  {
939  rightShifted = midShifted;
940  }
941  else
942  {
943  leftShifted = midShifted;
944  fLeft = fMid;
945  }
946  }
947  muCur = (leftShifted + rightShifted) / Literal(2);
948  }
949  else
950  {
951  // We have a problem as shifting on the left or right give either a positive or negative value
952  // at the middle of [left,right]...
953  // Instead fo abbording or entering an infinite loop,
954  // let's just use the middle as the estimated zero-crossing:
955  muCur = (right - left) * RealScalar(0.5);
956  if(shift == right)
957  muCur = -muCur;
958  }
959  }
960 
961  singVals[k] = shift + muCur;
962  shifts[k] = shift;
963  mus[k] = muCur;
964 
965 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
966  if(k+1<n)
967  std::cout << "found " << singVals[k] << " == " << shift << " + " << muCur << " from " << diag(k) << " .. " << diag(k+1) << "\n";
968 #endif
969 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
970  assert(k==0 || singVals[k]>=singVals[k-1]);
971  assert(singVals[k]>=diag(k));
972 #endif
973 
974  // perturb singular value slightly if it equals diagonal entry to avoid division by zero later
975  // (deflation is supposed to avoid this from happening)
976  // - this does no seem to be necessary anymore -
977 // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon();
978 // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon();
979  }
980 }
981 
982 
983 // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1)
984 template <typename MatrixType>
986  (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
987  const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat)
988 {
989  using std::sqrt;
990  Index n = col0.size();
991  Index m = perm.size();
992  if(m==0)
993  {
994  zhat.setZero();
995  return;
996  }
997  Index lastIdx = perm(m-1);
998  // The offset permits to skip deflated entries while computing zhat
999  for (Index k = 0; k < n; ++k)
1000  {
1001  if (col0(k) == Literal(0)) // deflated
1002  zhat(k) = Literal(0);
1003  else
1004  {
1005  // see equation (3.6)
1006  RealScalar dk = diag(k);
1007  RealScalar prod = (singVals(lastIdx) + dk) * (mus(lastIdx) + (shifts(lastIdx) - dk));
1008 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1009  if(prod<0) {
1010  std::cout << "k = " << k << " ; z(k)=" << col0(k) << ", diag(k)=" << dk << "\n";
1011  std::cout << "prod = " << "(" << singVals(lastIdx) << " + " << dk << ") * (" << mus(lastIdx) << " + (" << shifts(lastIdx) << " - " << dk << "))" << "\n";
1012  std::cout << " = " << singVals(lastIdx) + dk << " * " << mus(lastIdx) + (shifts(lastIdx) - dk) << "\n";
1013  }
1014  assert(prod>=0);
1015 #endif
1016 
1017  for(Index l = 0; l<m; ++l)
1018  {
1019  Index i = perm(l);
1020  if(i!=k)
1021  {
1022 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1023  if(i>=k && (l==0 || l-1>=m))
1024  {
1025  std::cout << "Error in perturbCol0\n";
1026  std::cout << " " << k << "/" << n << " " << l << "/" << m << " " << i << "/" << n << " ; " << col0(k) << " " << diag(k) << " " << "\n";
1027  std::cout << " " <<diag(i) << "\n";
1028  Index j = (i<k /*|| l==0*/) ? i : perm(l-1);
1029  std::cout << " " << "j=" << j << "\n";
1030  }
1031 #endif
1032  Index j = i<k ? i : perm(l-1);
1033 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1034  if(!(dk!=Literal(0) || diag(i)!=Literal(0)))
1035  {
1036  std::cout << "k=" << k << ", i=" << i << ", l=" << l << ", perm.size()=" << perm.size() << "\n";
1037  }
1038  assert(dk!=Literal(0) || diag(i)!=Literal(0));
1039 #endif
1040  prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk)));
1041 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1042  assert(prod>=0);
1043 #endif
1044 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1045  if(i!=k && numext::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 )
1046  std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk))
1047  << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n";
1048 #endif
1049  }
1050  }
1051 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1052  std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(lastIdx) + dk) << " * " << mus(lastIdx) + shifts(lastIdx) << " - " << dk << "\n";
1053 #endif
1054  RealScalar tmp = sqrt(prod);
1055 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1056  assert((numext::isfinite)(tmp));
1057 #endif
1058  zhat(k) = col0(k) > Literal(0) ? RealScalar(tmp) : RealScalar(-tmp);
1059  }
1060  }
1061 }
1062 
1063 // compute singular vectors
1064 template <typename MatrixType>
1066  (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals,
1067  const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V)
1068 {
1069  Index n = zhat.size();
1070  Index m = perm.size();
1071 
1072  for (Index k = 0; k < n; ++k)
1073  {
1074  if (zhat(k) == Literal(0))
1075  {
1076  U.col(k) = VectorType::Unit(n+1, k);
1077  if (m_compV) V.col(k) = VectorType::Unit(n, k);
1078  }
1079  else
1080  {
1081  U.col(k).setZero();
1082  for(Index l=0;l<m;++l)
1083  {
1084  Index i = perm(l);
1085  U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1086  }
1087  U(n,k) = Literal(0);
1088  U.col(k).normalize();
1089 
1090  if (m_compV)
1091  {
1092  V.col(k).setZero();
1093  for(Index l=1;l<m;++l)
1094  {
1095  Index i = perm(l);
1096  V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k]));
1097  }
1098  V(0,k) = Literal(-1);
1099  V.col(k).normalize();
1100  }
1101  }
1102  }
1103  U.col(n) = VectorType::Unit(n+1, n);
1104 }
1105 
1106 
1107 // page 12_13
1108 // i >= 1, di almost null and zi non null.
1109 // We use a rotation to zero out zi applied to the left of M
1110 template <typename MatrixType>
1112 {
1113  using std::abs;
1114  using std::sqrt;
1115  using std::pow;
1116  Index start = firstCol + shift;
1117  RealScalar c = m_computed(start, start);
1118  RealScalar s = m_computed(start+i, start);
1119  RealScalar r = numext::hypot(c,s);
1120  if (r == Literal(0))
1121  {
1122  m_computed(start+i, start+i) = Literal(0);
1123  return;
1124  }
1125  m_computed(start,start) = r;
1126  m_computed(start+i, start) = Literal(0);
1127  m_computed(start+i, start+i) = Literal(0);
1128 
1129  JacobiRotation<RealScalar> J(c/r,-s/r);
1130  if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J);
1131  else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J);
1132 }// end deflation 43
1133 
1134 
1135 // page 13
1136 // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M)
1137 // We apply two rotations to have zj = 0;
1138 // TODO deflation44 is still broken and not properly tested
1139 template <typename MatrixType>
1141 {
1142  using std::abs;
1143  using std::sqrt;
1144  using std::conj;
1145  using std::pow;
1146  RealScalar c = m_computed(firstColm+i, firstColm);
1147  RealScalar s = m_computed(firstColm+j, firstColm);
1149 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1150  std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; "
1151  << m_computed(firstColm + i-1, firstColm) << " "
1152  << m_computed(firstColm + i, firstColm) << " "
1153  << m_computed(firstColm + i+1, firstColm) << " "
1154  << m_computed(firstColm + i+2, firstColm) << "\n";
1155  std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " "
1156  << m_computed(firstColm + i, firstColm+i) << " "
1157  << m_computed(firstColm + i+1, firstColm+i+1) << " "
1158  << m_computed(firstColm + i+2, firstColm+i+2) << "\n";
1159 #endif
1160  if (r==Literal(0))
1161  {
1162  m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
1163  return;
1164  }
1165  c/=r;
1166  s/=r;
1167  m_computed(firstColm + i, firstColm) = r;
1168  m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i);
1169  m_computed(firstColm + j, firstColm) = Literal(0);
1170 
1172  if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J);
1173  else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J);
1174  if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J);
1175 }// end deflation 44
1176 
1177 
1178 // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
1179 template <typename MatrixType>
1181 {
1182  using std::sqrt;
1183  using std::abs;
1184  const Index length = lastCol + 1 - firstCol;
1185 
1186  Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1);
1187  Diagonal<MatrixXr> fulldiag(m_computed);
1188  VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length);
1189 
1190  const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)();
1191  RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff();
1192  RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag);
1193  RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag);
1194 
1195 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1196  assert(m_naiveU.allFinite());
1197  assert(m_naiveV.allFinite());
1198  assert(m_computed.allFinite());
1199 #endif
1200 
1201 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1202  std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n";
1203 #endif
1204 
1205  //condition 4.1
1206  if (diag(0) < epsilon_coarse)
1207  {
1208 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1209  std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n";
1210 #endif
1211  diag(0) = epsilon_coarse;
1212  }
1213 
1214  //condition 4.2
1215  for (Index i=1;i<length;++i)
1216  if (abs(col0(i)) < epsilon_strict)
1217  {
1218 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1219  std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n";
1220 #endif
1221  col0(i) = Literal(0);
1222  }
1223 
1224  //condition 4.3
1225  for (Index i=1;i<length; i++)
1226  if (diag(i) < epsilon_coarse)
1227  {
1228 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1229  std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n";
1230 #endif
1231  deflation43(firstCol, shift, i, length);
1232  }
1233 
1234 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1235  assert(m_naiveU.allFinite());
1236  assert(m_naiveV.allFinite());
1237  assert(m_computed.allFinite());
1238 #endif
1239 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1240  std::cout << "to be sorted: " << diag.transpose() << "\n\n";
1241  std::cout << " : " << col0.transpose() << "\n\n";
1242 #endif
1243  {
1244  // Check for total deflation
1245  // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting
1246  bool total_deflation = (col0.tail(length-1).array()<considerZero).all();
1247 
1248  // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge.
1249  // First, compute the respective permutation.
1250  Index *permutation = m_workspaceI.data();
1251  {
1252  permutation[0] = 0;
1253  Index p = 1;
1254 
1255  // Move deflated diagonal entries at the end.
1256  for(Index i=1; i<length; ++i)
1257  if(abs(diag(i))<considerZero)
1258  permutation[p++] = i;
1259 
1260  Index i=1, j=k+1;
1261  for( ; p < length; ++p)
1262  {
1263  if (i > k) permutation[p] = j++;
1264  else if (j >= length) permutation[p] = i++;
1265  else if (diag(i) < diag(j)) permutation[p] = j++;
1266  else permutation[p] = i++;
1267  }
1268  }
1269 
1270  // If we have a total deflation, then we have to insert diag(0) at the right place
1271  if(total_deflation)
1272  {
1273  for(Index i=1; i<length; ++i)
1274  {
1275  Index pi = permutation[i];
1276  if(abs(diag(pi))<considerZero || diag(0)<diag(pi))
1277  permutation[i-1] = permutation[i];
1278  else
1279  {
1280  permutation[i-1] = 0;
1281  break;
1282  }
1283  }
1284  }
1285 
1286  // Current index of each col, and current column of each index
1287  Index *realInd = m_workspaceI.data()+length;
1288  Index *realCol = m_workspaceI.data()+2*length;
1289 
1290  for(int pos = 0; pos< length; pos++)
1291  {
1292  realCol[pos] = pos;
1293  realInd[pos] = pos;
1294  }
1295 
1296  for(Index i = total_deflation?0:1; i < length; i++)
1297  {
1298  const Index pi = permutation[length - (total_deflation ? i+1 : i)];
1299  const Index J = realCol[pi];
1300 
1301  using std::swap;
1302  // swap diagonal and first column entries:
1303  swap(diag(i), diag(J));
1304  if(i!=0 && J!=0) swap(col0(i), col0(J));
1305 
1306  // change columns
1307  if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1));
1308  else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2));
1309  if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length));
1310 
1311  //update real pos
1312  const Index realI = realInd[i];
1313  realCol[realI] = J;
1314  realCol[pi] = i;
1315  realInd[J] = realI;
1316  realInd[i] = pi;
1317  }
1318  }
1319 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1320  std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n";
1321  std::cout << " : " << col0.transpose() << "\n\n";
1322 #endif
1323 
1324  //condition 4.4
1325  {
1326  Index i = length-1;
1327  while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i;
1328  for(; i>1;--i)
1329  if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag )
1330  {
1331 #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE
1332  std::cout << "deflation 4.4 with i = " << i << " because " << diag(i) << " - " << diag(i-1) << " == " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*/*diag(i)*/maxDiag << "\n";
1333 #endif
1334  eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted");
1335  deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length);
1336  }
1337  }
1338 
1339 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1340  for(Index j=2;j<length;++j)
1341  assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero);
1342 #endif
1343 
1344 #ifdef EIGEN_BDCSVD_SANITY_CHECKS
1345  assert(m_naiveU.allFinite());
1346  assert(m_naiveV.allFinite());
1347  assert(m_computed.allFinite());
1348 #endif
1349 }//end deflation
1350 
1357 template<typename Derived>
1359 MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
1360 {
1361  return BDCSVD<PlainObject>(*this, computationOptions);
1362 }
1363 
1364 } // end namespace Eigen
1365 
1366 #endif
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
Definition: ArrayCwiseUnaryOps.h:52
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Definition: ArrayCwiseUnaryOps.h:187
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE FixedSegmentReturnType< internal::get_fixed_value< NType >::value >::Type head(NType n)
Definition: BlockMethods.h:1208
#define EIGEN_SIZE_MIN_PREFER_DYNAMIC(a, b)
Definition: Macros.h:1294
#define eigen_internal_assert(x)
Definition: Macros.h:1043
#define eigen_assert(x)
Definition: Macros.h:1037
#define EIGEN_SIZE_MIN_PREFER_FIXED(a, b)
Definition: Macros.h:1302
class Bidiagonal Divide and Conquer SVD
Definition: BDCSVD.h:74
bool m_isTranspose
Definition: BDCSVD.h:201
void structured_update(Block< MatrixXr, Dynamic, Dynamic > A, const MatrixXr &B, Index n1)
Definition: BDCSVD.h:360
Matrix< RealScalar, Dynamic, 1 > VectorType
Definition: BDCSVD.h:103
Base::MatrixVType MatrixVType
Definition: BDCSVD.h:98
int m_algoswap
Definition: BDCSVD.h:200
Array< RealScalar, Dynamic, 1 > ArrayXr
Definition: BDCSVD.h:104
void deflation44(Index firstColu, Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
Definition: BDCSVD.h:1140
void computeSingVecs(const ArrayRef &zhat, const ArrayRef &diag, const IndicesRef &perm, const VectorType &singVals, const ArrayRef &shifts, const ArrayRef &mus, MatrixXr &U, MatrixXr &V)
Definition: BDCSVD.h:1066
NumTraits< typename MatrixType::Scalar >::Real RealScalar
Definition: BDCSVD.h:85
static RealScalar secularEq(RealScalar x, const ArrayRef &col0, const ArrayRef &diag, const IndicesRef &perm, const ArrayRef &diagShifted, RealScalar shift)
Definition: BDCSVD.h:723
BDCSVD(const MatrixType &matrix, unsigned int computationOptions=0)
Constructor performing the decomposition of given matrix.
Definition: BDCSVD.h:140
BDCSVD()
Default Constructor.
Definition: BDCSVD.h:114
@ MaxColsAtCompileTime
Definition: BDCSVD.h:92
@ DiagSizeAtCompileTime
Definition: BDCSVD.h:90
@ MaxRowsAtCompileTime
Definition: BDCSVD.h:91
@ RowsAtCompileTime
Definition: BDCSVD.h:88
@ MatrixOptions
Definition: BDCSVD.h:94
@ MaxDiagSizeAtCompileTime
Definition: BDCSVD.h:93
@ ColsAtCompileTime
Definition: BDCSVD.h:89
BDCSVD(Index rows, Index cols, unsigned int computationOptions=0)
Default Constructor with memory preallocation.
Definition: BDCSVD.h:124
Index m_nRec
Definition: BDCSVD.h:197
Base::SingularValuesType SingularValuesType
Definition: BDCSVD.h:99
Base::MatrixUType MatrixUType
Definition: BDCSVD.h:97
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: EigenBase.h:63
BDCSVD & compute(const MatrixType &matrix, unsigned int computationOptions)
Method performing the decomposition of given matrix using custom options.
Definition: BDCSVD.h:245
SVDBase< BDCSVD > Base
Definition: BDCSVD.h:75
bool m_compU
Definition: BDCSVD.h:201
bool m_compV
Definition: BDCSVD.h:201
MatrixXr m_computed
Definition: BDCSVD.h:196
Matrix< RealScalar, Dynamic, Dynamic, ColMajor > MatrixXr
Definition: BDCSVD.h:102
void deflation43(Index firstCol, Index shift, Index i, Index size)
Definition: BDCSVD.h:1111
void perturbCol0(const ArrayRef &col0, const ArrayRef &diag, const IndicesRef &perm, const VectorType &singVals, const ArrayRef &shifts, const ArrayRef &mus, ArrayRef zhat)
Definition: BDCSVD.h:986
MatrixXr m_naiveU
Definition: BDCSVD.h:195
void allocate(Index rows, Index cols, unsigned int computationOptions)
Definition: BDCSVD.h:222
ArrayXi m_workspaceI
Definition: BDCSVD.h:199
_MatrixType MatrixType
Definition: BDCSVD.h:83
MatrixXr m_naiveV
Definition: BDCSVD.h:195
Array< Index, 1, Dynamic > ArrayXi
Definition: BDCSVD.h:105
void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev)
Definition: BDCSVD.h:332
void setSwitchSize(int s)
Definition: BDCSVD.h:173
Ref< ArrayXi > IndicesRef
Definition: BDCSVD.h:107
NumTraits< RealScalar >::Literal Literal
Definition: BDCSVD.h:86
MatrixType::Scalar Scalar
Definition: BDCSVD.h:84
~BDCSVD()
Definition: BDCSVD.h:146
void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
Definition: BDCSVD.h:1180
BDCSVD & compute(const MatrixType &matrix)
Method performing the decomposition of given matrix using current options.
Definition: BDCSVD.h:168
Matrix< Scalar, Dynamic, Dynamic, ColMajor > MatrixX
Definition: BDCSVD.h:101
Ref< ArrayXr > ArrayRef
Definition: BDCSVD.h:106
ArrayXr m_workspace
Definition: BDCSVD.h:198
int m_numIters
Definition: BDCSVD.h:216
void computeSingVals(const ArrayRef &col0, const ArrayRef &diag, const IndicesRef &perm, VectorType &singVals, ArrayRef shifts, ArrayRef mus)
Definition: BDCSVD.h:739
void computeSVDofM(Index firstCol, Index n, MatrixXr &U, VectorType &singVals, MatrixXr &V)
Definition: BDCSVD.h:595
void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
Definition: BDCSVD.h:411
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: EigenBase.h:60
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:105
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition: Diagonal.h:65
Rotation given by a cosine-sine pair.
Definition: Jacobi.h:35
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition: JacobiSVD.h:490
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:96
BDCSVD< PlainObject > bdcSvd(unsigned int computationOptions=0) const
Definition: BDCSVD.h:1359
The matrix class, also used for vectors and row-vectors.
Definition: Matrix.h:180
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:145
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Definition: PlainObjectBase.h:271
EIGEN_DEVICE_FUNC Derived & setZero(Index size)
Definition: CwiseNullaryOp.h:562
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void swap(DenseBase< OtherDerived > &other)
Definition: PlainObjectBase.h:953
A matrix or vector expression mapping an existing expression.
Definition: Ref.h:283
Base class of SVD algorithms.
Definition: SVDBase.h:64
Index cols() const
Definition: SVDBase.h:213
bool m_computeFullV
Definition: SVDBase.h:278
const MatrixVType & matrixV() const
Definition: SVDBase.h:117
ComputationInfo m_info
Definition: SVDBase.h:275
bool m_computeThinU
Definition: SVDBase.h:277
const SingularValuesType & singularValues() const
Definition: SVDBase.h:129
EIGEN_DEVICE_FUNC ComputationInfo info() const
Reports whether previous computation was successful.
Definition: SVDBase.h:236
bool computeV() const
Definition: SVDBase.h:210
bool m_isInitialized
Definition: SVDBase.h:276
unsigned int m_computationOptions
Definition: SVDBase.h:279
MatrixVType m_matrixV
Definition: SVDBase.h:273
Index m_diagSize
Definition: SVDBase.h:280
bool computeU() const
Definition: SVDBase.h:208
internal::plain_diag_type< MatrixType, RealScalar >::type SingularValuesType
Definition: SVDBase.h:87
Index m_nonzeroSingularValues
Definition: SVDBase.h:280
Index rows() const
Definition: SVDBase.h:212
Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime > MatrixUType
Definition: SVDBase.h:85
SingularValuesType m_singularValues
Definition: SVDBase.h:274
bool m_computeThinV
Definition: SVDBase.h:278
bool m_computeFullU
Definition: SVDBase.h:277
MatrixUType m_matrixU
Definition: SVDBase.h:272
Matrix< Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime > MatrixVType
Definition: SVDBase.h:86
const MatrixUType & matrixU() const
Definition: SVDBase.h:101
Index nonzeroSingularValues() const
Definition: SVDBase.h:136
Expression of a fixed-size or dynamic-size sub-vector.
Definition: VectorBlock.h:60
DenseMatrixType toDenseMatrix() const
Definition: BandMatrix.h:145
Definition: UpperBidiagonalization.h:21
const HouseholderUSequenceType householderU() const
Definition: UpperBidiagonalization.h:70
const HouseholderVSequenceType householderV()
Definition: UpperBidiagonalization.h:76
const BidiagonalType & bidiagonal() const
Definition: UpperBidiagonalization.h:68
@ pos
Definition: Typedefs.h:19
@ Aligned
Definition: Constants.h:240
@ InvalidInput
Definition: Constants.h:449
@ Success
Definition: Constants.h:442
@ NoConvergence
Definition: Constants.h:446
@ ComputeFullV
Definition: Constants.h:397
@ ComputeFullU
Definition: Constants.h:393
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16() max(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:576
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16() min(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:571
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:514
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isfinite(const Eigen::bfloat16 &h)
Definition: BFloat16.h:671
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE internal::enable_if< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typename NumTraits< T >::Real >::type abs(const T &x)
Definition: MathFunctions.h:1509
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition: LDLT.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
static const Eigen::internal::all_t all
Definition: IndexedViewHelper.h:171
const int Dynamic
Definition: Constants.h:22
Definition: document.h:416
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name, cert-dcl58-cpp) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression, cppcoreguidelines-noexcept-swap, performance-noexcept-swap) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
Definition: json.hpp:25399
const GenericPointer< typename T::ValueType > T2 T::AllocatorType & a
Definition: pointer.h:1181
void swap(T &lhs, T &rhs)
Definition: pugixml.cpp:7597
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:39
EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT
Definition: EigenBase.h:67
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:233
_MatrixType MatrixType
Definition: BDCSVD.h:44
Definition: ForwardDeclarations.h:17