NDDEM
StableNorm.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_STABLENORM_H
11 #define EIGEN_STABLENORM_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 template<typename ExpressionType, typename Scalar>
18 inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
19 {
20  Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
21 
22  if(maxCoeff>scale)
23  {
24  ssq = ssq * numext::abs2(scale/maxCoeff);
25  Scalar tmp = Scalar(1)/maxCoeff;
26  if(tmp > NumTraits<Scalar>::highest())
27  {
28  invScale = NumTraits<Scalar>::highest();
29  scale = Scalar(1)/invScale;
30  }
31  else if(maxCoeff>NumTraits<Scalar>::highest()) // we got a INF
32  {
33  invScale = Scalar(1);
34  scale = maxCoeff;
35  }
36  else
37  {
38  scale = maxCoeff;
39  invScale = tmp;
40  }
41  }
42  else if(maxCoeff!=maxCoeff) // we got a NaN
43  {
44  scale = maxCoeff;
45  }
46 
47  // TODO if the maxCoeff is much much smaller than the current scale,
48  // then we can neglect this sub vector
49  if(scale>Scalar(0)) // if scale==0, then bl is 0
50  ssq += (bl*invScale).squaredNorm();
51 }
52 
53 template<typename VectorType, typename RealScalar>
54 void stable_norm_impl_inner_step(const VectorType &vec, RealScalar& ssq, RealScalar& scale, RealScalar& invScale)
55 {
56  typedef typename VectorType::Scalar Scalar;
57  const Index blockSize = 4096;
58 
59  typedef typename internal::nested_eval<VectorType,2>::type VectorTypeCopy;
60  typedef typename internal::remove_all<VectorTypeCopy>::type VectorTypeCopyClean;
61  const VectorTypeCopy copy(vec);
62 
63  enum {
65  || (int(internal::evaluator<VectorTypeCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough
66  ) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT)
67  && (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization
68  };
71  Index n = vec.size();
72 
74  if (bi>0)
75  internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale);
76  for (; bi<n; bi+=blockSize)
77  internal::stable_norm_kernel(SegmentWrapper(copy.segment(bi,numext::mini(blockSize, n - bi))), ssq, scale, invScale);
78 }
79 
80 template<typename VectorType>
81 typename VectorType::RealScalar
83 {
84  using std::sqrt;
85  using std::abs;
86 
87  Index n = vec.size();
88 
89  if(n==1)
90  return abs(vec.coeff(0));
91 
92  typedef typename VectorType::RealScalar RealScalar;
93  RealScalar scale(0);
94  RealScalar invScale(1);
95  RealScalar ssq(0); // sum of squares
96 
97  stable_norm_impl_inner_step(vec, ssq, scale, invScale);
98 
99  return scale * sqrt(ssq);
100 }
101 
102 template<typename MatrixType>
103 typename MatrixType::RealScalar
105 {
106  using std::sqrt;
107 
108  typedef typename MatrixType::RealScalar RealScalar;
109  RealScalar scale(0);
110  RealScalar invScale(1);
111  RealScalar ssq(0); // sum of squares
112 
113  for(Index j=0; j<mat.outerSize(); ++j)
114  stable_norm_impl_inner_step(mat.innerVector(j), ssq, scale, invScale);
115  return scale * sqrt(ssq);
116 }
117 
118 template<typename Derived>
119 inline typename NumTraits<typename traits<Derived>::Scalar>::Real
121 {
122  typedef typename Derived::RealScalar RealScalar;
123  using std::pow;
124  using std::sqrt;
125  using std::abs;
126 
127  // This program calculates the machine-dependent constants
128  // bl, b2, slm, s2m, relerr overfl
129  // from the "basic" machine-dependent numbers
130  // nbig, ibeta, it, iemin, iemax, rbig.
131  // The following define the basic machine-dependent constants.
132  // For portability, the PORT subprograms "ilmaeh" and "rlmach"
133  // are used. For any specific computer, each of the assignment
134  // statements can be replaced
135  static const int ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
136  static const int it = NumTraits<RealScalar>::digits(); // number of base-beta digits in mantissa
137  static const int iemin = NumTraits<RealScalar>::min_exponent(); // minimum exponent
138  static const int iemax = NumTraits<RealScalar>::max_exponent(); // maximum exponent
139  static const RealScalar rbig = NumTraits<RealScalar>::highest(); // largest floating-point number
140  static const RealScalar b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(-((1-iemin)/2)))); // lower boundary of midrange
141  static const RealScalar b2 = RealScalar(pow(RealScalar(ibeta),RealScalar((iemax + 1 - it)/2))); // upper boundary of midrange
142  static const RealScalar s1m = RealScalar(pow(RealScalar(ibeta),RealScalar((2-iemin)/2))); // scaling factor for lower range
143  static const RealScalar s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(- ((iemax+it)/2)))); // scaling factor for upper range
144  static const RealScalar eps = RealScalar(pow(double(ibeta), 1-it));
145  static const RealScalar relerr = sqrt(eps); // tolerance for neglecting asml
146 
147  const Derived& vec(_vec.derived());
148  Index n = vec.size();
149  RealScalar ab2 = b2 / RealScalar(n);
150  RealScalar asml = RealScalar(0);
151  RealScalar amed = RealScalar(0);
152  RealScalar abig = RealScalar(0);
153 
154  for(Index j=0; j<vec.outerSize(); ++j)
155  {
156  for(typename Derived::InnerIterator iter(vec, j); iter; ++iter)
157  {
158  RealScalar ax = abs(iter.value());
159  if(ax > ab2) abig += numext::abs2(ax*s2m);
160  else if(ax < b1) asml += numext::abs2(ax*s1m);
161  else amed += numext::abs2(ax);
162  }
163  }
164  if(amed!=amed)
165  return amed; // we got a NaN
166  if(abig > RealScalar(0))
167  {
168  abig = sqrt(abig);
169  if(abig > rbig) // overflow, or *this contains INF values
170  return abig; // return INF
171  if(amed > RealScalar(0))
172  {
173  abig = abig/s2m;
174  amed = sqrt(amed);
175  }
176  else
177  return abig/s2m;
178  }
179  else if(asml > RealScalar(0))
180  {
181  if (amed > RealScalar(0))
182  {
183  abig = sqrt(amed);
184  amed = sqrt(asml) / s1m;
185  }
186  else
187  return sqrt(asml)/s1m;
188  }
189  else
190  return sqrt(amed);
191  asml = numext::mini(abig, amed);
192  abig = numext::maxi(abig, amed);
193  if(asml <= abig*relerr)
194  return abig;
195  else
196  return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig));
197 }
198 
199 } // end namespace internal
200 
211 template<typename Derived>
212 inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
214 {
215  return internal::stable_norm_impl(derived());
216 }
217 
227 template<typename Derived>
230 {
231  return internal::blueNorm_impl(*this);
232 }
233 
239 template<typename Derived>
242 {
243  if(size()==1)
244  return numext::abs(coeff(0,0));
245  else
246  return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>());
247 }
248 
249 } // end namespace Eigen
250 
251 #endif // EIGEN_STABLENORM_H
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
Definition: ArrayCwiseUnaryOps.h:52
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Definition: ArrayCwiseUnaryOps.h:187
const VectorBlock< const Derived > ConstSegmentReturnType
Definition: BlockMethods.h:39
#define EIGEN_MAX_STATIC_ALIGN_BYTES
Definition: ConfigureVectorization.h:128
#define EIGEN_STACK_ALLOCATION_LIMIT
Definition: Macros.h:54
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseAbsReturnType cwiseAbs() const
Definition: MatrixCwiseUnaryOps.h:33
NumTraits< Scalar >::Real RealScalar
Definition: DenseBase.h:73
RealScalar hypotNorm() const
Definition: StableNorm.h:241
RealScalar blueNorm() const
Definition: StableNorm.h:229
RealScalar stableNorm() const
Definition: StableNorm.h:213
const unsigned int DirectAccessBit
Definition: Constants.h:155
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 pow(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:514
VectorType::RealScalar stable_norm_impl(const VectorType &vec, typename enable_if< VectorType::IsVectorAtCompileTime >::type *=0)
Definition: StableNorm.h:82
void stable_norm_impl_inner_step(const VectorType &vec, RealScalar &ssq, RealScalar &scale, RealScalar &invScale)
Definition: StableNorm.h:54
static Index first_default_aligned(const DenseBase< Derived > &m)
Definition: DenseCoeffsBase.h:650
NumTraits< typename traits< Derived >::Scalar >::Real blueNorm_impl(const EigenBase< Derived > &_vec)
Definition: StableNorm.h:120
void stable_norm_kernel(const ExpressionType &bl, Scalar &ssq, Scalar &scale, Scalar &invScale)
Definition: StableNorm.h:18
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition: MathFunctions.h:1091
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE internal::enable_if< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typename NumTraits< T >::Real >::type abs(const T &x)
Definition: MathFunctions.h:1509
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T &x, const T &y)
Definition: MathFunctions.h:1083
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
Namespace containing all symbols from the Eigen library.
Definition: LDLT.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
type
The type the bitset is encoded with.
Definition: bitset.hpp:44
Flags
Special flags for archives.
Definition: cereal.hpp:185
Definition: document.h:416
Definition: EigenBase.h:30
EIGEN_DEVICE_FUNC Derived & derived()
Definition: EigenBase.h:46
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:233
Definition: Meta.h:109
Definition: Meta.h:273
Definition: CoreEvaluators.h:91
T type
Definition: Meta.h:126
Definition: ForwardDeclarations.h:210
Definition: Meta.h:96