NDDEM
MathFunctions.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MATHFUNCTIONS_H
12 #define EIGEN_MATHFUNCTIONS_H
13 
14 // TODO this should better be moved to NumTraits
15 // Source: WolframAlpha
16 #define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L
17 #define EIGEN_LOG2E 1.442695040888963407359924681001892137426645954152985934135449406931109219L
18 #define EIGEN_LN2 0.693147180559945309417232121458176568075500134360255254120680009493393621L
19 
20 namespace Eigen {
21 
22 // On WINCE, std::abs is defined for int only, so let's defined our own overloads:
23 // This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
24 #if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
25 long abs(long x) { return (labs(x)); }
26 double abs(double x) { return (fabs(x)); }
27 float abs(float x) { return (fabsf(x)); }
28 long double abs(long double x) { return (fabsl(x)); }
29 #endif
30 
31 namespace internal {
32 
53 template<typename T, typename dummy = void>
55 {
56  typedef T type;
57 };
58 
59 template<typename T> struct always_void { typedef void type; };
60 
61 template<typename T>
63  <T,
64  typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
65  >
66 {
67  typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
68 };
69 
70 #define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
71 #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
72 
73 /****************************************************************************
74 * Implementation of real *
75 ****************************************************************************/
76 
77 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
79 {
82  static inline RealScalar run(const Scalar& x)
83  {
84  return x;
85  }
86 };
87 
88 template<typename Scalar>
89 struct real_default_impl<Scalar,true>
90 {
93  static inline RealScalar run(const Scalar& x)
94  {
95  using std::real;
96  return real(x);
97  }
98 };
99 
100 template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
101 
102 #if defined(EIGEN_GPU_COMPILE_PHASE)
103 template<typename T>
104 struct real_impl<std::complex<T> >
105 {
106  typedef T RealScalar;
108  static inline T run(const std::complex<T>& x)
109  {
110  return x.real();
111  }
112 };
113 #endif
114 
115 template<typename Scalar>
117 {
118  typedef typename NumTraits<Scalar>::Real type;
119 };
120 
121 /****************************************************************************
122 * Implementation of imag *
123 ****************************************************************************/
124 
125 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
127 {
130  static inline RealScalar run(const Scalar&)
131  {
132  return RealScalar(0);
133  }
134 };
135 
136 template<typename Scalar>
137 struct imag_default_impl<Scalar,true>
138 {
141  static inline RealScalar run(const Scalar& x)
142  {
143  using std::imag;
144  return imag(x);
145  }
146 };
147 
148 template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
149 
150 #if defined(EIGEN_GPU_COMPILE_PHASE)
151 template<typename T>
152 struct imag_impl<std::complex<T> >
153 {
154  typedef T RealScalar;
156  static inline T run(const std::complex<T>& x)
157  {
158  return x.imag();
159  }
160 };
161 #endif
162 
163 template<typename Scalar>
165 {
166  typedef typename NumTraits<Scalar>::Real type;
167 };
168 
169 /****************************************************************************
170 * Implementation of real_ref *
171 ****************************************************************************/
172 
173 template<typename Scalar>
175 {
178  static inline RealScalar& run(Scalar& x)
179  {
180  return reinterpret_cast<RealScalar*>(&x)[0];
181  }
183  static inline const RealScalar& run(const Scalar& x)
184  {
185  return reinterpret_cast<const RealScalar*>(&x)[0];
186  }
187 };
188 
189 template<typename Scalar>
191 {
192  typedef typename NumTraits<Scalar>::Real & type;
193 };
194 
195 /****************************************************************************
196 * Implementation of imag_ref *
197 ****************************************************************************/
198 
199 template<typename Scalar, bool IsComplex>
201 {
204  static inline RealScalar& run(Scalar& x)
205  {
206  return reinterpret_cast<RealScalar*>(&x)[1];
207  }
209  static inline const RealScalar& run(const Scalar& x)
210  {
211  return reinterpret_cast<RealScalar*>(&x)[1];
212  }
213 };
214 
215 template<typename Scalar>
216 struct imag_ref_default_impl<Scalar, false>
217 {
219  static inline Scalar run(Scalar&)
220  {
221  return Scalar(0);
222  }
224  static inline const Scalar run(const Scalar&)
225  {
226  return Scalar(0);
227  }
228 };
229 
230 template<typename Scalar>
231 struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
232 
233 template<typename Scalar>
235 {
236  typedef typename NumTraits<Scalar>::Real & type;
237 };
238 
239 /****************************************************************************
240 * Implementation of conj *
241 ****************************************************************************/
242 
243 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
245 {
247  static inline Scalar run(const Scalar& x)
248  {
249  return x;
250  }
251 };
252 
253 template<typename Scalar>
254 struct conj_default_impl<Scalar,true>
255 {
257  static inline Scalar run(const Scalar& x)
258  {
259  using std::conj;
260  return conj(x);
261  }
262 };
263 
264 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
265 struct conj_impl : conj_default_impl<Scalar, IsComplex> {};
266 
267 template<typename Scalar>
269 {
270  typedef Scalar type;
271 };
272 
273 /****************************************************************************
274 * Implementation of abs2 *
275 ****************************************************************************/
276 
277 template<typename Scalar,bool IsComplex>
279 {
282  static inline RealScalar run(const Scalar& x)
283  {
284  return x*x;
285  }
286 };
287 
288 template<typename Scalar>
289 struct abs2_impl_default<Scalar, true> // IsComplex
290 {
293  static inline RealScalar run(const Scalar& x)
294  {
295  return x.real()*x.real() + x.imag()*x.imag();
296  }
297 };
298 
299 template<typename Scalar>
300 struct abs2_impl
301 {
304  static inline RealScalar run(const Scalar& x)
305  {
307  }
308 };
309 
310 template<typename Scalar>
312 {
313  typedef typename NumTraits<Scalar>::Real type;
314 };
315 
316 /****************************************************************************
317 * Implementation of sqrt/rsqrt *
318 ****************************************************************************/
319 
320 template<typename Scalar>
321 struct sqrt_impl
322 {
324  static EIGEN_ALWAYS_INLINE Scalar run(const Scalar& x)
325  {
327  return sqrt(x);
328  }
329 };
330 
331 // Complex sqrt defined in MathFunctionsImpl.h.
332 template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_sqrt(const std::complex<T>& a_x);
333 
334 // Custom implementation is faster than `std::sqrt`, works on
335 // GPU, and correctly handles special cases (unlike MSVC).
336 template<typename T>
337 struct sqrt_impl<std::complex<T> >
338 {
340  static EIGEN_ALWAYS_INLINE std::complex<T> run(const std::complex<T>& x)
341  {
342  return complex_sqrt<T>(x);
343  }
344 };
345 
346 template<typename Scalar>
348 {
349  typedef Scalar type;
350 };
351 
352 // Default implementation relies on numext::sqrt, at bottom of file.
353 template<typename T>
354 struct rsqrt_impl;
355 
356 // Complex rsqrt defined in MathFunctionsImpl.h.
357 template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_rsqrt(const std::complex<T>& a_x);
358 
359 template<typename T>
360 struct rsqrt_impl<std::complex<T> >
361 {
363  static EIGEN_ALWAYS_INLINE std::complex<T> run(const std::complex<T>& x)
364  {
365  return complex_rsqrt<T>(x);
366  }
367 };
368 
369 template<typename Scalar>
371 {
372  typedef Scalar type;
373 };
374 
375 /****************************************************************************
376 * Implementation of norm1 *
377 ****************************************************************************/
378 
379 template<typename Scalar, bool IsComplex>
381 
382 template<typename Scalar>
383 struct norm1_default_impl<Scalar,true>
384 {
387  static inline RealScalar run(const Scalar& x)
388  {
390  return abs(x.real()) + abs(x.imag());
391  }
392 };
393 
394 template<typename Scalar>
395 struct norm1_default_impl<Scalar, false>
396 {
398  static inline Scalar run(const Scalar& x)
399  {
401  return abs(x);
402  }
403 };
404 
405 template<typename Scalar>
406 struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};
407 
408 template<typename Scalar>
410 {
411  typedef typename NumTraits<Scalar>::Real type;
412 };
413 
414 /****************************************************************************
415 * Implementation of hypot *
416 ****************************************************************************/
417 
418 template<typename Scalar> struct hypot_impl;
419 
420 template<typename Scalar>
422 {
423  typedef typename NumTraits<Scalar>::Real type;
424 };
425 
426 /****************************************************************************
427 * Implementation of cast *
428 ****************************************************************************/
429 
430 template<typename OldType, typename NewType, typename EnableIf = void>
431 struct cast_impl
432 {
434  static inline NewType run(const OldType& x)
435  {
436  return static_cast<NewType>(x);
437  }
438 };
439 
440 // Casting from S -> Complex<T> leads to an implicit conversion from S to T,
441 // generating warnings on clang. Here we explicitly cast the real component.
442 template<typename OldType, typename NewType>
443 struct cast_impl<OldType, NewType,
444  typename internal::enable_if<
445  !NumTraits<OldType>::IsComplex && NumTraits<NewType>::IsComplex
446  >::type>
447 {
449  static inline NewType run(const OldType& x)
450  {
451  typedef typename NumTraits<NewType>::Real NewReal;
452  return static_cast<NewType>(static_cast<NewReal>(x));
453  }
454 };
455 
456 // here, for once, we're plainly returning NewType: we don't want cast to do weird things.
457 
458 template<typename OldType, typename NewType>
460 inline NewType cast(const OldType& x)
461 {
463 }
464 
465 /****************************************************************************
466 * Implementation of round *
467 ****************************************************************************/
468 
469 template<typename Scalar>
471 {
473  static inline Scalar run(const Scalar& x)
474  {
475  EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
476 #if EIGEN_HAS_CXX11_MATH
478 #endif
479  return Scalar(round(x));
480  }
481 };
482 
483 #if !EIGEN_HAS_CXX11_MATH
484 #if EIGEN_HAS_C99_MATH
485 // Use ::roundf for float.
486 template<>
487 struct round_impl<float> {
489  static inline float run(const float& x)
490  {
491  return ::roundf(x);
492  }
493 };
494 #else
495 template<typename Scalar>
497 {
499  static inline Scalar run(const Scalar& x)
500  {
501  EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
502  // Without C99 round/roundf, resort to floor/ceil.
505  // If not enough precision to resolve a decimal at all, return the input.
506  // Otherwise, adding 0.5 can trigger an increment by 1.
507  const Scalar limit = Scalar(1ull << (NumTraits<Scalar>::digits() - 1));
508  if (x >= limit || x <= -limit) {
509  return x;
510  }
511  return (x > Scalar(0)) ? Scalar(floor(x + Scalar(0.5))) : Scalar(ceil(x - Scalar(0.5)));
512  }
513 };
514 
515 template<>
516 struct round_impl<float> : round_using_floor_ceil_impl<float> {};
517 
518 template<>
519 struct round_impl<double> : round_using_floor_ceil_impl<double> {};
520 #endif // EIGEN_HAS_C99_MATH
521 #endif // !EIGEN_HAS_CXX11_MATH
522 
523 template<typename Scalar>
525 {
526  typedef Scalar type;
527 };
528 
529 /****************************************************************************
530 * Implementation of rint *
531 ****************************************************************************/
532 
533 template<typename Scalar>
534 struct rint_impl {
536  static inline Scalar run(const Scalar& x)
537  {
538  EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
539 #if EIGEN_HAS_CXX11_MATH
541 #endif
542  return rint(x);
543  }
544 };
545 
546 #if !EIGEN_HAS_CXX11_MATH
547 template<>
548 struct rint_impl<double> {
550  static inline double run(const double& x)
551  {
552  return ::rint(x);
553  }
554 };
555 template<>
556 struct rint_impl<float> {
558  static inline float run(const float& x)
559  {
560  return ::rintf(x);
561  }
562 };
563 #endif
564 
565 template<typename Scalar>
567 {
568  typedef Scalar type;
569 };
570 
571 /****************************************************************************
572 * Implementation of arg *
573 ****************************************************************************/
574 
575 // Visual Studio 2017 has a bug where arg(float) returns 0 for negative inputs.
576 // This seems to be fixed in VS 2019.
577 #if EIGEN_HAS_CXX11_MATH && (!EIGEN_COMP_MSVC || EIGEN_COMP_MSVC >= 1920)
578 // std::arg is only defined for types of std::complex, or integer types or float/double/long double
579 template<typename Scalar,
583 struct arg_default_impl;
584 
585 template<typename Scalar>
586 struct arg_default_impl<Scalar, true> {
587  typedef typename NumTraits<Scalar>::Real RealScalar;
589  static inline RealScalar run(const Scalar& x)
590  {
591  #if defined(EIGEN_HIP_DEVICE_COMPILE)
592  // HIP does not seem to have a native device side implementation for the math routine "arg"
593  using std::arg;
594  #else
596  #endif
597  return static_cast<RealScalar>(arg(x));
598  }
599 };
600 
601 // Must be non-complex floating-point type (e.g. half/bfloat16).
602 template<typename Scalar>
603 struct arg_default_impl<Scalar, false> {
604  typedef typename NumTraits<Scalar>::Real RealScalar;
606  static inline RealScalar run(const Scalar& x)
607  {
608  return (x < Scalar(0)) ? RealScalar(EIGEN_PI) : RealScalar(0);
609  }
610 };
611 #else
612 template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
614 {
617  static inline RealScalar run(const Scalar& x)
618  {
619  return (x < RealScalar(0)) ? RealScalar(EIGEN_PI) : RealScalar(0);
620  }
621 };
622 
623 template<typename Scalar>
624 struct arg_default_impl<Scalar,true>
625 {
628  static inline RealScalar run(const Scalar& x)
629  {
631  return arg(x);
632  }
633 };
634 #endif
635 template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
636 
637 template<typename Scalar>
639 {
640  typedef typename NumTraits<Scalar>::Real type;
641 };
642 
643 /****************************************************************************
644 * Implementation of expm1 *
645 ****************************************************************************/
646 
647 // This implementation is based on GSL Math's expm1.
648 namespace std_fallback {
649  // fallback expm1 implementation in case there is no expm1(Scalar) function in namespace of Scalar,
650  // or that there is no suitable std::expm1 function available. Implementation
651  // attributed to Kahan. See: http://www.plunk.org/~hatch/rightway.php.
652  template<typename Scalar>
653  EIGEN_DEVICE_FUNC inline Scalar expm1(const Scalar& x) {
655  typedef typename NumTraits<Scalar>::Real RealScalar;
656 
658  Scalar u = exp(x);
659  if (numext::equal_strict(u, Scalar(1))) {
660  return x;
661  }
662  Scalar um1 = u - RealScalar(1);
663  if (numext::equal_strict(um1, Scalar(-1))) {
664  return RealScalar(-1);
665  }
666 
668  Scalar logu = log(u);
669  return numext::equal_strict(u, logu) ? u : (u - RealScalar(1)) * x / logu;
670  }
671 }
672 
673 template<typename Scalar>
674 struct expm1_impl {
675  EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x)
676  {
678  #if EIGEN_HAS_CXX11_MATH
679  using std::expm1;
680  #else
681  using std_fallback::expm1;
682  #endif
683  return expm1(x);
684  }
685 };
686 
687 template<typename Scalar>
689 {
690  typedef Scalar type;
691 };
692 
693 /****************************************************************************
694 * Implementation of log *
695 ****************************************************************************/
696 
697 // Complex log defined in MathFunctionsImpl.h.
698 template<typename T> EIGEN_DEVICE_FUNC std::complex<T> complex_log(const std::complex<T>& z);
699 
700 template<typename Scalar>
701 struct log_impl {
702  EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x)
703  {
705  return static_cast<Scalar>(log(x));
706  }
707 };
708 
709 template<typename Scalar>
710 struct log_impl<std::complex<Scalar> > {
711  EIGEN_DEVICE_FUNC static inline std::complex<Scalar> run(const std::complex<Scalar>& z)
712  {
713  return complex_log(z);
714  }
715 };
716 
717 /****************************************************************************
718 * Implementation of log1p *
719 ****************************************************************************/
720 
721 namespace std_fallback {
722  // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar,
723  // or that there is no suitable std::log1p function available
724  template<typename Scalar>
725  EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) {
727  typedef typename NumTraits<Scalar>::Real RealScalar;
729  Scalar x1p = RealScalar(1) + x;
730  Scalar log_1p = log_impl<Scalar>::run(x1p);
731  const bool is_small = numext::equal_strict(x1p, Scalar(1));
732  const bool is_inf = numext::equal_strict(x1p, log_1p);
733  return (is_small || is_inf) ? x : x * (log_1p / (x1p - RealScalar(1)));
734  }
735 }
736 
737 template<typename Scalar>
738 struct log1p_impl {
739  EIGEN_DEVICE_FUNC static inline Scalar run(const Scalar& x)
740  {
742  #if EIGEN_HAS_CXX11_MATH
743  using std::log1p;
744  #else
745  using std_fallback::log1p;
746  #endif
747  return log1p(x);
748  }
749 };
750 
751 // Specialization for complex types that are not supported by std::log1p.
752 template <typename RealScalar>
753 struct log1p_impl<std::complex<RealScalar> > {
754  EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(
755  const std::complex<RealScalar>& x) {
757  return std_fallback::log1p(x);
758  }
759 };
760 
761 template<typename Scalar>
763 {
764  typedef Scalar type;
765 };
766 
767 /****************************************************************************
768 * Implementation of pow *
769 ****************************************************************************/
770 
771 template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger>
772 struct pow_impl
773 {
774  //typedef Scalar retval;
776  static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y)
777  {
779  return pow(x, y);
780  }
781 };
782 
783 template<typename ScalarX,typename ScalarY>
784 struct pow_impl<ScalarX,ScalarY, true>
785 {
786  typedef ScalarX result_type;
787  static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y)
788  {
789  ScalarX res(1);
791  if(y & 1) res *= x;
792  y >>= 1;
793  while(y)
794  {
795  x *= x;
796  if(y&1) res *= x;
797  y >>= 1;
798  }
799  return res;
800  }
801 };
802 
803 /****************************************************************************
804 * Implementation of random *
805 ****************************************************************************/
806 
807 template<typename Scalar,
808  bool IsComplex,
809  bool IsInteger>
811 
812 template<typename Scalar>
813 struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
814 
815 template<typename Scalar>
817 {
818  typedef Scalar type;
819 };
820 
821 template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
822 template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();
823 
824 template<typename Scalar>
825 struct random_default_impl<Scalar, false, false>
826 {
827  static inline Scalar run(const Scalar& x, const Scalar& y)
828  {
829  return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
830  }
831  static inline Scalar run()
832  {
833  return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
834  }
835 };
836 
837 enum {
842 };
843 
844 template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
845 {
846  enum { middle = (lower + upper) / 2,
847  value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
848  : (n < (1 << middle)) ? int(meta_floor_log2_move_down)
849  : (n==0) ? int(meta_floor_log2_bogus)
851  };
852 };
853 
854 template<unsigned int n,
855  int lower = 0,
856  int upper = sizeof(unsigned int) * CHAR_BIT - 1,
858 struct meta_floor_log2 {};
859 
860 template<unsigned int n, int lower, int upper>
862 {
864 };
865 
866 template<unsigned int n, int lower, int upper>
867 struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
868 {
870 };
871 
872 template<unsigned int n, int lower, int upper>
874 {
875  enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
876 };
877 
878 template<unsigned int n, int lower, int upper>
879 struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
880 {
881  // no value, error at compile time
882 };
883 
884 template<typename Scalar>
885 struct random_default_impl<Scalar, false, true>
886 {
887  static inline Scalar run(const Scalar& x, const Scalar& y)
888  {
889  if (y <= x)
890  return x;
891  // ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself.
892  typedef typename make_unsigned<Scalar>::type ScalarU;
893  // ScalarX is the widest of ScalarU and unsigned int.
894  // We'll deal only with ScalarX and unsigned int below thus avoiding signed
895  // types and arithmetic and signed overflows (which are undefined behavior).
896  typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX;
897  // The following difference doesn't overflow, provided our integer types are two's
898  // complement and have the same number of padding bits in signed and unsigned variants.
899  // This is the case in most modern implementations of C++.
900  ScalarX range = ScalarX(y) - ScalarX(x);
901  ScalarX offset = 0;
902  ScalarX divisor = 1;
903  ScalarX multiplier = 1;
904  const unsigned rand_max = RAND_MAX;
905  if (range <= rand_max) divisor = (rand_max + 1) / (range + 1);
906  else multiplier = 1 + range / (rand_max + 1);
907  // Rejection sampling.
908  do {
909  offset = (unsigned(std::rand()) * multiplier) / divisor;
910  } while (offset > range);
911  return Scalar(ScalarX(x) + offset);
912  }
913 
914  static inline Scalar run()
915  {
916 #ifdef EIGEN_MAKING_DOCS
917  return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
918 #else
919  enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
920  scalar_bits = sizeof(Scalar) * CHAR_BIT,
921  shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
922  offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
923  };
924  return Scalar((std::rand() >> shift) - offset);
925 #endif
926  }
927 };
928 
929 template<typename Scalar>
930 struct random_default_impl<Scalar, true, false>
931 {
932  static inline Scalar run(const Scalar& x, const Scalar& y)
933  {
934  return Scalar(random(x.real(), y.real()),
935  random(x.imag(), y.imag()));
936  }
937  static inline Scalar run()
938  {
939  typedef typename NumTraits<Scalar>::Real RealScalar;
940  return Scalar(random<RealScalar>(), random<RealScalar>());
941  }
942 };
943 
944 template<typename Scalar>
945 inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
946 {
947  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
948 }
949 
950 template<typename Scalar>
952 {
953  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
954 }
955 
956 // Implementation of is* functions
957 
958 // std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang.
959 #if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
960 #define EIGEN_USE_STD_FPCLASSIFY 1
961 #else
962 #define EIGEN_USE_STD_FPCLASSIFY 0
963 #endif
964 
965 template<typename T>
968 isnan_impl(const T&) { return false; }
969 
970 template<typename T>
973 isinf_impl(const T&) { return false; }
974 
975 template<typename T>
978 isfinite_impl(const T&) { return true; }
979 
980 template<typename T>
983 isfinite_impl(const T& x)
984 {
985  #if defined(EIGEN_GPU_COMPILE_PHASE)
986  return (::isfinite)(x);
987  #elif EIGEN_USE_STD_FPCLASSIFY
988  using std::isfinite;
989  return isfinite EIGEN_NOT_A_MACRO (x);
990  #else
991  return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
992  #endif
993 }
994 
995 template<typename T>
998 isinf_impl(const T& x)
999 {
1000  #if defined(EIGEN_GPU_COMPILE_PHASE)
1001  return (::isinf)(x);
1002  #elif EIGEN_USE_STD_FPCLASSIFY
1003  using std::isinf;
1004  return isinf EIGEN_NOT_A_MACRO (x);
1005  #else
1006  return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
1007  #endif
1008 }
1009 
1010 template<typename T>
1013 isnan_impl(const T& x)
1014 {
1015  #if defined(EIGEN_GPU_COMPILE_PHASE)
1016  return (::isnan)(x);
1017  #elif EIGEN_USE_STD_FPCLASSIFY
1018  using std::isnan;
1019  return isnan EIGEN_NOT_A_MACRO (x);
1020  #else
1021  return x != x;
1022  #endif
1023 }
1024 
1025 #if (!EIGEN_USE_STD_FPCLASSIFY)
1026 
1027 #if EIGEN_COMP_MSVC
1028 
1029 template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x)
1030 {
1031  return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
1032 }
1033 
1034 //MSVC defines a _isnan builtin function, but for double only
1035 EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; }
1036 EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; }
1037 EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; }
1038 
1039 EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); }
1040 EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); }
1041 EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); }
1042 
1043 #elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
1044 
1045 #if EIGEN_GNUC_AT_LEAST(5,0)
1046  #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
1047 #else
1048  // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol),
1049  // while the second prevent too aggressive optimizations in fast-math mode:
1050  #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only")))
1051 #endif
1052 
1053 template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); }
1054 template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); }
1055 template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); }
1056 template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); }
1057 template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); }
1058 template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); }
1059 
1060 #undef EIGEN_TMP_NOOPT_ATTRIB
1061 
1062 #endif
1063 
1064 #endif
1065 
1066 // The following overload are defined at the end of this file
1067 template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
1068 template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
1069 template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
1070 
1071 template<typename T> T generic_fast_tanh_float(const T& a_x);
1072 } // end namespace internal
1073 
1074 /****************************************************************************
1075 * Generic math functions *
1076 ****************************************************************************/
1077 
1078 namespace numext {
1079 
1080 #if (!defined(EIGEN_GPUCC) || defined(EIGEN_CONSTEXPR_ARE_DEVICE_FUNC))
1081 template<typename T>
1083 EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
1084 {
1086  return min EIGEN_NOT_A_MACRO (x,y);
1087 }
1088 
1089 template<typename T>
1091 EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
1092 {
1094  return max EIGEN_NOT_A_MACRO (x,y);
1095 }
1096 #else
1097 template<typename T>
1099 EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
1100 {
1101  return y < x ? y : x;
1102 }
1103 template<>
1105 EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
1106 {
1107  return fminf(x, y);
1108 }
1109 template<>
1111 EIGEN_ALWAYS_INLINE double mini(const double& x, const double& y)
1112 {
1113  return fmin(x, y);
1114 }
1115 template<>
1117 EIGEN_ALWAYS_INLINE long double mini(const long double& x, const long double& y)
1118 {
1119 #if defined(EIGEN_HIPCC)
1120  // no "fminl" on HIP yet
1121  return (x < y) ? x : y;
1122 #else
1123  return fminl(x, y);
1124 #endif
1125 }
1126 
1127 template<typename T>
1129 EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
1130 {
1131  return x < y ? y : x;
1132 }
1133 template<>
1135 EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
1136 {
1137  return fmaxf(x, y);
1138 }
1139 template<>
1141 EIGEN_ALWAYS_INLINE double maxi(const double& x, const double& y)
1142 {
1143  return fmax(x, y);
1144 }
1145 template<>
1147 EIGEN_ALWAYS_INLINE long double maxi(const long double& x, const long double& y)
1148 {
1149 #if defined(EIGEN_HIPCC)
1150  // no "fmaxl" on HIP yet
1151  return (x > y) ? x : y;
1152 #else
1153  return fmaxl(x, y);
1154 #endif
1155 }
1156 #endif
1157 
1158 #if defined(SYCL_DEVICE_ONLY)
1159 
1160 
1161 #define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
1162  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_char) \
1163  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_short) \
1164  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_int) \
1165  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_long)
1166 #define SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
1167  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_char) \
1168  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_short) \
1169  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_int) \
1170  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_long)
1171 #define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
1172  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar) \
1173  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort) \
1174  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_uint) \
1175  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong)
1176 #define SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
1177  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uchar) \
1178  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ushort) \
1179  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_uint) \
1180  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_ulong)
1181 #define SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(NAME, FUNC) \
1182  SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY(NAME, FUNC) \
1183  SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY(NAME, FUNC)
1184 #define SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(NAME, FUNC) \
1185  SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY(NAME, FUNC) \
1186  SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY(NAME, FUNC)
1187 #define SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(NAME, FUNC) \
1188  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \
1189  SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC,cl::sycl::cl_double)
1190 #define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(NAME, FUNC) \
1191  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, cl::sycl::cl_float) \
1192  SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC,cl::sycl::cl_double)
1193 #define SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(NAME, FUNC, RET_TYPE) \
1194  SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_float) \
1195  SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, cl::sycl::cl_double)
1196 
1197 #define SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \
1198 template<> \
1199  EIGEN_DEVICE_FUNC \
1200  EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE& x) { \
1201  return cl::sycl::FUNC(x); \
1202  }
1203 
1204 #define SYCL_SPECIALIZE_UNARY_FUNC(NAME, FUNC, TYPE) \
1205  SYCL_SPECIALIZE_GEN_UNARY_FUNC(NAME, FUNC, TYPE, TYPE)
1206 
1207 #define SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE1, ARG_TYPE2) \
1208  template<> \
1209  EIGEN_DEVICE_FUNC \
1210  EIGEN_ALWAYS_INLINE RET_TYPE NAME(const ARG_TYPE1& x, const ARG_TYPE2& y) { \
1211  return cl::sycl::FUNC(x, y); \
1212  }
1213 
1214 #define SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE) \
1215  SYCL_SPECIALIZE_GEN1_BINARY_FUNC(NAME, FUNC, RET_TYPE, ARG_TYPE, ARG_TYPE)
1216 
1217 #define SYCL_SPECIALIZE_BINARY_FUNC(NAME, FUNC, TYPE) \
1218  SYCL_SPECIALIZE_GEN2_BINARY_FUNC(NAME, FUNC, TYPE, TYPE)
1219 
1220 SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(mini, min)
1221 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(mini, fmin)
1222 SYCL_SPECIALIZE_INTEGER_TYPES_BINARY(maxi, max)
1223 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(maxi, fmax)
1224 
1225 #endif
1226 
1227 
1228 template<typename Scalar>
1230 inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
1231 {
1232  return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
1233 }
1234 
1235 template<typename Scalar>
1238 {
1240 }
1241 
1242 template<typename Scalar>
1244 inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
1245 {
1246  return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
1247 }
1248 
1249 template<typename Scalar>
1251 inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
1252 {
1253  return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
1254 }
1255 
1256 template<typename Scalar>
1258 inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
1259 {
1260  return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
1261 }
1262 
1263 template<typename Scalar>
1266 {
1268 }
1269 
1270 template<typename Scalar>
1272 inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
1273 {
1274  return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
1275 }
1276 
1277 template<typename Scalar>
1279 inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
1280 {
1281  return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
1282 }
1283 
1284 template<typename Scalar>
1286 inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
1287 {
1288  return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
1289 }
1290 
1292 inline bool abs2(bool x) { return x; }
1293 
1294 template<typename T>
1296 EIGEN_ALWAYS_INLINE T absdiff(const T& x, const T& y)
1297 {
1298  return x > y ? x - y : y - x;
1299 }
1300 template<>
1302 EIGEN_ALWAYS_INLINE float absdiff(const float& x, const float& y)
1303 {
1304  return fabsf(x - y);
1305 }
1306 template<>
1308 EIGEN_ALWAYS_INLINE double absdiff(const double& x, const double& y)
1309 {
1310  return fabs(x - y);
1311 }
1312 
1313 #if !defined(EIGEN_GPUCC)
1314 // HIP and CUDA do not support long double.
1315 template<>
1317 EIGEN_ALWAYS_INLINE long double absdiff(const long double& x, const long double& y) {
1318  return fabsl(x - y);
1319 }
1320 #endif
1321 
1322 template<typename Scalar>
1324 inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
1325 {
1326  return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
1327 }
1328 
1329 template<typename Scalar>
1331 inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
1332 {
1333  return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
1334 }
1335 
1336 #if defined(SYCL_DEVICE_ONLY)
1337  SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(hypot, hypot)
1338 #endif
1339 
1340 template<typename Scalar>
1342 inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
1343 {
1344  return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
1345 }
1346 
1347 #if defined(SYCL_DEVICE_ONLY)
1348 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log1p, log1p)
1349 #endif
1350 
1351 #if defined(EIGEN_GPUCC)
1353 float log1p(const float &x) { return ::log1pf(x); }
1354 
1356 double log1p(const double &x) { return ::log1p(x); }
1357 #endif
1358 
1359 template<typename ScalarX,typename ScalarY>
1361 inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y)
1362 {
1364 }
1365 
1366 #if defined(SYCL_DEVICE_ONLY)
1367 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(pow, pow)
1368 #endif
1369 
1370 template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
1371 template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
1372 template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
1373 
1374 #if defined(SYCL_DEVICE_ONLY)
1375 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isnan, isnan, bool)
1376 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isinf, isinf, bool)
1377 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE(isfinite, isfinite, bool)
1378 #endif
1379 
1380 template<typename Scalar>
1382 inline EIGEN_MATHFUNC_RETVAL(rint, Scalar) rint(const Scalar& x)
1383 {
1384  return EIGEN_MATHFUNC_IMPL(rint, Scalar)::run(x);
1385 }
1386 
1387 template<typename Scalar>
1389 inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
1390 {
1391  return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
1392 }
1393 
1394 #if defined(SYCL_DEVICE_ONLY)
1395 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(round, round)
1396 #endif
1397 
1398 template<typename T>
1400 T (floor)(const T& x)
1401 {
1403  return floor(x);
1404 }
1405 
1406 #if defined(SYCL_DEVICE_ONLY)
1407 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(floor, floor)
1408 #endif
1409 
1410 #if defined(EIGEN_GPUCC)
1412 float floor(const float &x) { return ::floorf(x); }
1413 
1415 double floor(const double &x) { return ::floor(x); }
1416 #endif
1417 
1418 template<typename T>
1420 T (ceil)(const T& x)
1421 {
1423  return ceil(x);
1424 }
1425 
1426 #if defined(SYCL_DEVICE_ONLY)
1427 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(ceil, ceil)
1428 #endif
1429 
1430 #if defined(EIGEN_GPUCC)
1432 float ceil(const float &x) { return ::ceilf(x); }
1433 
1435 double ceil(const double &x) { return ::ceil(x); }
1436 #endif
1437 
1438 
1441 inline int log2(int x)
1442 {
1443  eigen_assert(x>=0);
1444  unsigned int v(x);
1445  static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
1446  v |= v >> 1;
1447  v |= v >> 2;
1448  v |= v >> 4;
1449  v |= v >> 8;
1450  v |= v >> 16;
1451  return table[(v * 0x07C4ACDDU) >> 27];
1452 }
1453 
1463 template<typename Scalar>
1466 {
1467  return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x);
1468 }
1469 
1470 // Boolean specialization, avoids implicit float to bool conversion (-Wimplicit-conversion-floating-point-to-bool).
1471 template<>
1473 bool sqrt<bool>(const bool &x) { return x; }
1474 
1475 #if defined(SYCL_DEVICE_ONLY)
1476 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sqrt, sqrt)
1477 #endif
1478 
1480 template<typename T>
1482 T rsqrt(const T& x)
1483 {
1484  return internal::rsqrt_impl<T>::run(x);
1485 }
1486 
1487 template<typename T>
1489 T log(const T &x) {
1490  return internal::log_impl<T>::run(x);
1491 }
1492 
1493 #if defined(SYCL_DEVICE_ONLY)
1494 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(log, log)
1495 #endif
1496 
1497 
1498 #if defined(EIGEN_GPUCC)
1500 float log(const float &x) { return ::logf(x); }
1501 
1503 double log(const double &x) { return ::log(x); }
1504 #endif
1505 
1506 template<typename T>
1508 typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
1509 abs(const T &x) {
1511  return abs(x);
1512 }
1513 
1514 template<typename T>
1517 abs(const T &x) {
1518  return x;
1519 }
1520 
1521 #if defined(SYCL_DEVICE_ONLY)
1522 SYCL_SPECIALIZE_INTEGER_TYPES_UNARY(abs, abs)
1523 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(abs, fabs)
1524 #endif
1525 
1526 #if defined(EIGEN_GPUCC)
1528 float abs(const float &x) { return ::fabsf(x); }
1529 
1531 double abs(const double &x) { return ::fabs(x); }
1532 
1534 float abs(const std::complex<float>& x) {
1535  return ::hypotf(x.real(), x.imag());
1536 }
1537 
1539 double abs(const std::complex<double>& x) {
1540  return ::hypot(x.real(), x.imag());
1541 }
1542 #endif
1543 
1544 template<typename T>
1546 T exp(const T &x) {
1548  return exp(x);
1549 }
1550 
1551 #if defined(SYCL_DEVICE_ONLY)
1552 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(exp, exp)
1553 #endif
1554 
1555 #if defined(EIGEN_GPUCC)
1557 float exp(const float &x) { return ::expf(x); }
1558 
1560 double exp(const double &x) { return ::exp(x); }
1561 
1563 std::complex<float> exp(const std::complex<float>& x) {
1564  float com = ::expf(x.real());
1565  float res_real = com * ::cosf(x.imag());
1566  float res_imag = com * ::sinf(x.imag());
1567  return std::complex<float>(res_real, res_imag);
1568 }
1569 
1571 std::complex<double> exp(const std::complex<double>& x) {
1572  double com = ::exp(x.real());
1573  double res_real = com * ::cos(x.imag());
1574  double res_imag = com * ::sin(x.imag());
1575  return std::complex<double>(res_real, res_imag);
1576 }
1577 #endif
1578 
1579 template<typename Scalar>
1581 inline EIGEN_MATHFUNC_RETVAL(expm1, Scalar) expm1(const Scalar& x)
1582 {
1583  return EIGEN_MATHFUNC_IMPL(expm1, Scalar)::run(x);
1584 }
1585 
1586 #if defined(SYCL_DEVICE_ONLY)
1587 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(expm1, expm1)
1588 #endif
1589 
1590 #if defined(EIGEN_GPUCC)
1592 float expm1(const float &x) { return ::expm1f(x); }
1593 
1595 double expm1(const double &x) { return ::expm1(x); }
1596 #endif
1597 
1598 template<typename T>
1600 T cos(const T &x) {
1602  return cos(x);
1603 }
1604 
1605 #if defined(SYCL_DEVICE_ONLY)
1606 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cos,cos)
1607 #endif
1608 
1609 #if defined(EIGEN_GPUCC)
1611 float cos(const float &x) { return ::cosf(x); }
1612 
1614 double cos(const double &x) { return ::cos(x); }
1615 #endif
1616 
1617 template<typename T>
1619 T sin(const T &x) {
1621  return sin(x);
1622 }
1623 
1624 #if defined(SYCL_DEVICE_ONLY)
1625 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sin, sin)
1626 #endif
1627 
1628 #if defined(EIGEN_GPUCC)
1630 float sin(const float &x) { return ::sinf(x); }
1631 
1633 double sin(const double &x) { return ::sin(x); }
1634 #endif
1635 
1636 template<typename T>
1638 T tan(const T &x) {
1640  return tan(x);
1641 }
1642 
1643 #if defined(SYCL_DEVICE_ONLY)
1644 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tan, tan)
1645 #endif
1646 
1647 #if defined(EIGEN_GPUCC)
1649 float tan(const float &x) { return ::tanf(x); }
1650 
1652 double tan(const double &x) { return ::tan(x); }
1653 #endif
1654 
1655 template<typename T>
1657 T acos(const T &x) {
1659  return acos(x);
1660 }
1661 
1662 #if EIGEN_HAS_CXX11_MATH
1663 template<typename T>
1665 T acosh(const T &x) {
1666  EIGEN_USING_STD(acosh);
1667  return static_cast<T>(acosh(x));
1668 }
1669 #endif
1670 
1671 #if defined(SYCL_DEVICE_ONLY)
1672 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acos, acos)
1673 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(acosh, acosh)
1674 #endif
1675 
1676 #if defined(EIGEN_GPUCC)
1678 float acos(const float &x) { return ::acosf(x); }
1679 
1681 double acos(const double &x) { return ::acos(x); }
1682 #endif
1683 
1684 template<typename T>
1686 T asin(const T &x) {
1688  return asin(x);
1689 }
1690 
1691 #if EIGEN_HAS_CXX11_MATH
1692 template<typename T>
1694 T asinh(const T &x) {
1695  EIGEN_USING_STD(asinh);
1696  return static_cast<T>(asinh(x));
1697 }
1698 #endif
1699 
1700 #if defined(SYCL_DEVICE_ONLY)
1701 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asin, asin)
1702 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(asinh, asinh)
1703 #endif
1704 
1705 #if defined(EIGEN_GPUCC)
1707 float asin(const float &x) { return ::asinf(x); }
1708 
1710 double asin(const double &x) { return ::asin(x); }
1711 #endif
1712 
1713 template<typename T>
1715 T atan(const T &x) {
1717  return static_cast<T>(atan(x));
1718 }
1719 
1720 #if EIGEN_HAS_CXX11_MATH
1721 template<typename T>
1723 T atanh(const T &x) {
1724  EIGEN_USING_STD(atanh);
1725  return static_cast<T>(atanh(x));
1726 }
1727 #endif
1728 
1729 #if defined(SYCL_DEVICE_ONLY)
1730 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atan, atan)
1731 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(atanh, atanh)
1732 #endif
1733 
1734 #if defined(EIGEN_GPUCC)
1736 float atan(const float &x) { return ::atanf(x); }
1737 
1739 double atan(const double &x) { return ::atan(x); }
1740 #endif
1741 
1742 
1743 template<typename T>
1745 T cosh(const T &x) {
1747  return static_cast<T>(cosh(x));
1748 }
1749 
1750 #if defined(SYCL_DEVICE_ONLY)
1751 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(cosh, cosh)
1752 #endif
1753 
1754 #if defined(EIGEN_GPUCC)
1756 float cosh(const float &x) { return ::coshf(x); }
1757 
1759 double cosh(const double &x) { return ::cosh(x); }
1760 #endif
1761 
1762 template<typename T>
1764 T sinh(const T &x) {
1766  return static_cast<T>(sinh(x));
1767 }
1768 
1769 #if defined(SYCL_DEVICE_ONLY)
1770 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(sinh, sinh)
1771 #endif
1772 
1773 #if defined(EIGEN_GPUCC)
1775 float sinh(const float &x) { return ::sinhf(x); }
1776 
1778 double sinh(const double &x) { return ::sinh(x); }
1779 #endif
1780 
1781 template<typename T>
1783 T tanh(const T &x) {
1785  return tanh(x);
1786 }
1787 
1788 #if (!defined(EIGEN_GPUCC)) && EIGEN_FAST_MATH && !defined(SYCL_DEVICE_ONLY)
1790 float tanh(float x) { return internal::generic_fast_tanh_float(x); }
1791 #endif
1792 
1793 #if defined(SYCL_DEVICE_ONLY)
1794 SYCL_SPECIALIZE_FLOATING_TYPES_UNARY(tanh, tanh)
1795 #endif
1796 
1797 #if defined(EIGEN_GPUCC)
1799 float tanh(const float &x) { return ::tanhf(x); }
1800 
1802 double tanh(const double &x) { return ::tanh(x); }
1803 #endif
1804 
1805 template <typename T>
1807 T fmod(const T& a, const T& b) {
1809  return fmod(a, b);
1810 }
1811 
1812 #if defined(SYCL_DEVICE_ONLY)
1813 SYCL_SPECIALIZE_FLOATING_TYPES_BINARY(fmod, fmod)
1814 #endif
1815 
1816 #if defined(EIGEN_GPUCC)
1817 template <>
1819 float fmod(const float& a, const float& b) {
1820  return ::fmodf(a, b);
1821 }
1822 
1823 template <>
1825 double fmod(const double& a, const double& b) {
1826  return ::fmod(a, b);
1827 }
1828 #endif
1829 
1830 #if defined(SYCL_DEVICE_ONLY)
1831 #undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_BINARY
1832 #undef SYCL_SPECIALIZE_SIGNED_INTEGER_TYPES_UNARY
1833 #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_BINARY
1834 #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY
1835 #undef SYCL_SPECIALIZE_INTEGER_TYPES_BINARY
1836 #undef SYCL_SPECIALIZE_UNSIGNED_INTEGER_TYPES_UNARY
1837 #undef SYCL_SPECIALIZE_FLOATING_TYPES_BINARY
1838 #undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY
1839 #undef SYCL_SPECIALIZE_FLOATING_TYPES_UNARY_FUNC_RET_TYPE
1840 #undef SYCL_SPECIALIZE_GEN_UNARY_FUNC
1841 #undef SYCL_SPECIALIZE_UNARY_FUNC
1842 #undef SYCL_SPECIALIZE_GEN1_BINARY_FUNC
1843 #undef SYCL_SPECIALIZE_GEN2_BINARY_FUNC
1844 #undef SYCL_SPECIALIZE_BINARY_FUNC
1845 #endif
1846 
1847 } // end namespace numext
1848 
1849 namespace internal {
1850 
1851 template<typename T>
1852 EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
1853 {
1855 }
1856 
1857 template<typename T>
1858 EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
1859 {
1860  return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
1861 }
1862 
1863 template<typename T>
1864 EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
1865 {
1866  return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
1867 }
1868 
1869 /****************************************************************************
1870 * Implementation of fuzzy comparisons *
1871 ****************************************************************************/
1872 
1873 template<typename Scalar,
1874  bool IsComplex,
1875  bool IsInteger>
1877 
1878 template<typename Scalar>
1879 struct scalar_fuzzy_default_impl<Scalar, false, false>
1880 {
1882  template<typename OtherScalar> EIGEN_DEVICE_FUNC
1883  static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
1884  {
1885  return numext::abs(x) <= numext::abs(y) * prec;
1886  }
1888  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
1889  {
1890  return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec;
1891  }
1893  static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
1894  {
1895  return x <= y || isApprox(x, y, prec);
1896  }
1897 };
1898 
1899 template<typename Scalar>
1900 struct scalar_fuzzy_default_impl<Scalar, false, true>
1901 {
1903  template<typename OtherScalar> EIGEN_DEVICE_FUNC
1904  static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
1905  {
1906  return x == Scalar(0);
1907  }
1909  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
1910  {
1911  return x == y;
1912  }
1914  static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
1915  {
1916  return x <= y;
1917  }
1918 };
1919 
1920 template<typename Scalar>
1921 struct scalar_fuzzy_default_impl<Scalar, true, false>
1922 {
1924  template<typename OtherScalar> EIGEN_DEVICE_FUNC
1925  static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
1926  {
1927  return numext::abs2(x) <= numext::abs2(y) * prec * prec;
1928  }
1930  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
1931  {
1932  return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
1933  }
1934 };
1935 
1936 template<typename Scalar>
1937 struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
1938 
1939 template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
1940 inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
1941  const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1942 {
1943  return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
1944 }
1945 
1946 template<typename Scalar> EIGEN_DEVICE_FUNC
1947 inline bool isApprox(const Scalar& x, const Scalar& y,
1948  const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1949 {
1950  return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
1951 }
1952 
1953 template<typename Scalar> EIGEN_DEVICE_FUNC
1954 inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
1955  const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
1956 {
1957  return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
1958 }
1959 
1960 /******************************************
1961 *** The special case of the bool type ***
1962 ******************************************/
1963 
1964 template<> struct random_impl<bool>
1965 {
1966  static inline bool run()
1967  {
1968  return random<int>(0,1)==0 ? false : true;
1969  }
1970 
1971  static inline bool run(const bool& a, const bool& b)
1972  {
1973  return random<int>(a, b)==0 ? false : true;
1974  }
1975 };
1976 
1977 template<> struct scalar_fuzzy_impl<bool>
1978 {
1979  typedef bool RealScalar;
1980 
1981  template<typename OtherScalar> EIGEN_DEVICE_FUNC
1982  static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
1983  {
1984  return !x;
1985  }
1986 
1988  static inline bool isApprox(bool x, bool y, bool)
1989  {
1990  return x == y;
1991  }
1992 
1994  static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
1995  {
1996  return (!x) || y;
1997  }
1998 
1999 };
2000 
2001 } // end namespace internal
2002 
2003 // Default implementations that rely on other numext implementations
2004 namespace internal {
2005 
2006 // Specialization for complex types that are not supported by std::expm1.
2007 template <typename RealScalar>
2008 struct expm1_impl<std::complex<RealScalar> > {
2009  EIGEN_DEVICE_FUNC static inline std::complex<RealScalar> run(
2010  const std::complex<RealScalar>& x) {
2012  RealScalar xr = x.real();
2013  RealScalar xi = x.imag();
2014  // expm1(z) = exp(z) - 1
2015  // = exp(x + i * y) - 1
2016  // = exp(x) * (cos(y) + i * sin(y)) - 1
2017  // = exp(x) * cos(y) - 1 + i * exp(x) * sin(y)
2018  // Imag(expm1(z)) = exp(x) * sin(y)
2019  // Real(expm1(z)) = exp(x) * cos(y) - 1
2020  // = exp(x) * cos(y) - 1.
2021  // = expm1(x) + exp(x) * (cos(y) - 1)
2022  // = expm1(x) + exp(x) * (2 * sin(y / 2) ** 2)
2023  RealScalar erm1 = numext::expm1<RealScalar>(xr);
2024  RealScalar er = erm1 + RealScalar(1.);
2025  RealScalar sin2 = numext::sin(xi / RealScalar(2.));
2026  sin2 = sin2 * sin2;
2027  RealScalar s = numext::sin(xi);
2028  RealScalar real_part = erm1 - RealScalar(2.) * er * sin2;
2029  return std::complex<RealScalar>(real_part, er * s);
2030  }
2031 };
2032 
2033 template<typename T>
2034 struct rsqrt_impl {
2036  static EIGEN_ALWAYS_INLINE T run(const T& x) {
2037  return T(1)/numext::sqrt(x);
2038  }
2039 };
2040 
2041 #if defined(EIGEN_GPU_COMPILE_PHASE)
2042 template<typename T>
2043 struct conj_impl<std::complex<T>, true>
2044 {
2046  static inline std::complex<T> run(const std::complex<T>& x)
2047  {
2048  return std::complex<T>(numext::real(x), -numext::imag(x));
2049  }
2050 };
2051 #endif
2052 
2053 } // end namespace internal
2054 
2055 } // end namespace Eigen
2056 
2057 #endif // EIGEN_MATHFUNCTIONS_H
EIGEN_DEVICE_FUNC const TanReturnType tan() const
Definition: ArrayCwiseUnaryOps.h:269
EIGEN_DEVICE_FUNC const ExpReturnType exp() const
Definition: ArrayCwiseUnaryOps.h:97
EIGEN_DEVICE_FUNC const SinhReturnType sinh() const
Definition: ArrayCwiseUnaryOps.h:339
EIGEN_DEVICE_FUNC const FloorReturnType floor() const
Definition: ArrayCwiseUnaryOps.h:481
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const AbsReturnType abs() const
Definition: ArrayCwiseUnaryOps.h:52
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArgReturnType arg() const
Definition: ArrayCwiseUnaryOps.h:66
EIGEN_DEVICE_FUNC const LogReturnType log() const
Definition: ArrayCwiseUnaryOps.h:128
EIGEN_DEVICE_FUNC const AcosReturnType acos() const
Definition: ArrayCwiseUnaryOps.h:297
EIGEN_DEVICE_FUNC const CeilReturnType ceil() const
Definition: ArrayCwiseUnaryOps.h:495
EIGEN_DEVICE_FUNC const SqrtReturnType sqrt() const
Definition: ArrayCwiseUnaryOps.h:187
EIGEN_DEVICE_FUNC const AsinReturnType asin() const
Definition: ArrayCwiseUnaryOps.h:311
EIGEN_DEVICE_FUNC const Log1pReturnType log1p() const
Definition: ArrayCwiseUnaryOps.h:142
EIGEN_DEVICE_FUNC const CosReturnType cos() const
Definition: ArrayCwiseUnaryOps.h:237
EIGEN_DEVICE_FUNC const SinReturnType sin() const
Definition: ArrayCwiseUnaryOps.h:255
EIGEN_DEVICE_FUNC const AtanReturnType atan() const
Definition: ArrayCwiseUnaryOps.h:283
EIGEN_DEVICE_FUNC const RintReturnType rint() const
Definition: ArrayCwiseUnaryOps.h:453
EIGEN_DEVICE_FUNC const RoundReturnType round() const
Definition: ArrayCwiseUnaryOps.h:467
EIGEN_DEVICE_FUNC const TanhReturnType tanh() const
Definition: ArrayCwiseUnaryOps.h:325
EIGEN_DEVICE_FUNC const CoshReturnType cosh() const
Definition: ArrayCwiseUnaryOps.h:353
EIGEN_DEVICE_FUNC const Expm1ReturnType expm1() const
Definition: ArrayCwiseUnaryOps.h:111
EIGEN_DEVICE_FUNC RealReturnType real() const
Definition: CommonCwiseUnaryOps.h:100
EIGEN_DEVICE_FUNC const ImagReturnType imag() const
Definition: CommonCwiseUnaryOps.h:109
T random()
Definition: LinkedList.cpp:11
#define EIGEN_PLAIN_ENUM_MAX(a, b)
Definition: Macros.h:1289
#define EIGEN_ALWAYS_INLINE
Definition: Macros.h:932
#define EIGEN_USING_STD(FUNC)
Definition: Macros.h:1185
#define EIGEN_PLAIN_ENUM_MIN(a, b)
Definition: Macros.h:1288
#define EIGEN_CONSTEXPR
Definition: Macros.h:787
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:976
#define eigen_assert(x)
Definition: Macros.h:1037
#define EIGEN_NOT_A_MACRO
Definition: Macros.h:896
#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Definition: Macros.h:985
#define EIGEN_MATHFUNC_IMPL(func, scalar)
Definition: MathFunctions.h:70
#define EIGEN_PI
Definition: MathFunctions.h:16
#define EIGEN_STATIC_ASSERT_NON_INTEGER(TYPE)
Definition: StaticAssert.h:187
#define EIGEN_STATIC_ASSERT(CONDITION, MSG)
Definition: StaticAssert.h:127
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16() max(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:576
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16() min(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:571
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 fmin(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:582
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 fmax(const bfloat16 &a, const bfloat16 &b)
Definition: BFloat16.h:587
EIGEN_DEVICE_FUNC Scalar expm1(const Scalar &x)
Definition: MathFunctions.h:653
EIGEN_DEVICE_FUNC Scalar log1p(const Scalar &x)
Definition: MathFunctions.h:725
EIGEN_DEVICE_FUNC internal::enable_if< internal::is_integral< T >::value, bool >::type isfinite_impl(const T &)
Definition: MathFunctions.h:978
EIGEN_DEVICE_FUNC internal::enable_if< internal::is_integral< T >::value, bool >::type isinf_impl(const T &)
Definition: MathFunctions.h:973
@ meta_floor_log2_terminate
Definition: MathFunctions.h:838
@ meta_floor_log2_move_up
Definition: MathFunctions.h:839
@ meta_floor_log2_move_down
Definition: MathFunctions.h:840
@ meta_floor_log2_bogus
Definition: MathFunctions.h:841
const Scalar & y
Definition: MathFunctions.h:821
EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
Definition: MathFunctions.h:1947
EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
Definition: MathFunctions.h:1940
EIGEN_DEVICE_FUNC NewType cast(const OldType &x)
Definition: MathFunctions.h:460
EIGEN_DEVICE_FUNC internal::enable_if< internal::is_integral< T >::value, bool >::type isnan_impl(const T &)
Definition: MathFunctions.h:968
T generic_fast_tanh_float(const T &a_x)
Definition: MathFunctionsImpl.h:29
EIGEN_DEVICE_FUNC std::complex< T > complex_log(const std::complex< T > &z)
Definition: MathFunctionsImpl.h:188
EIGEN_DEVICE_FUNC std::complex< T > complex_sqrt(const std::complex< T > &a_x)
Definition: MathFunctionsImpl.h:111
EIGEN_DEVICE_FUNC std::complex< T > complex_rsqrt(const std::complex< T > &a_x)
Definition: MathFunctionsImpl.h:148
EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar &x
EIGEN_DEVICE_FUNC bool isApproxOrLessThan(const Scalar &x, const Scalar &y, const typename NumTraits< Scalar >::Real &precision=NumTraits< Scalar >::dummy_precision())
Definition: MathFunctions.h:1954
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T log(const T &x)
Definition: MathFunctions.h:1489
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isinf(const Eigen::bfloat16 &h)
Definition: BFloat16.h:665
EIGEN_DEVICE_FUNC bool() isfinite(const T &x)
Definition: MathFunctions.h:1372
EIGEN_DEVICE_FUNC bool() isinf(const T &x)
Definition: MathFunctions.h:1371
EIGEN_DEVICE_FUNC bool() isnan(const T &x)
Definition: MathFunctions.h:1370
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool equal_strict(const X &x, const Y &y)
Definition: Meta.h:787
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isfinite(const Eigen::bfloat16 &h)
Definition: BFloat16.h:671
int log2(int x)
Definition: MathFunctions.h:1441
EIGEN_DEVICE_FUNC T() floor(const T &x)
Definition: MathFunctions.h:1400
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T maxi(const T &x, const T &y)
Definition: MathFunctions.h:1091
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T fmod(const T &a, const T &b)
Definition: MathFunctions.h:1807
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cos(const T &x)
Definition: MathFunctions.h:1600
EIGEN_DEVICE_FUNC const Scalar & y
Definition: MathFunctions.h:1332
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T rsqrt(const T &x)
Definition: MathFunctions.h:1482
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool() isnan(const Eigen::bfloat16 &h)
Definition: BFloat16.h:659
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE internal::enable_if< NumTraits< T >::IsSigned||NumTraits< T >::IsComplex, typename NumTraits< T >::Real >::type abs(const T &x)
Definition: MathFunctions.h:1509
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T absdiff(const T &x, const T &y)
Definition: MathFunctions.h:1296
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T asin(const T &x)
Definition: MathFunctions.h:1686
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tanh(const T &x)
Definition: MathFunctions.h:1783
EIGEN_DEVICE_FUNC internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar &x)
Definition: MathFunctions.h:1265
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T atan(const T &x)
Definition: MathFunctions.h:1715
EIGEN_DEVICE_FUNC T() ceil(const T &x)
Definition: MathFunctions.h:1420
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T cosh(const T &x)
Definition: MathFunctions.h:1745
EIGEN_DEVICE_FUNC EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar &x)
Definition: MathFunctions.h:1230
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T exp(const T &x)
Definition: MathFunctions.h:1546
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sin(const T &x)
Definition: MathFunctions.h:1619
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T acos(const T &x)
Definition: MathFunctions.h:1657
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE float sqrt(const float &x)
Definition: MathFunctions.h:177
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T tan(const T &x)
Definition: MathFunctions.h:1638
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T mini(const T &x, const T &y)
Definition: MathFunctions.h:1083
EIGEN_DEVICE_FUNC bool abs2(bool x)
Definition: MathFunctions.h:1292
EIGEN_DEVICE_FUNC internal::pow_impl< ScalarX, ScalarY >::result_type pow(const ScalarX &x, const ScalarY &y)
Definition: MathFunctions.h:1361
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T sinh(const T &x)
Definition: MathFunctions.h:1764
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_DEVICE_FUNC bool sqrt< bool >(const bool &x)
Definition: MathFunctions.h:1473
EIGEN_DEVICE_FUNC internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar &x)
Definition: MathFunctions.h:1237
Namespace containing all symbols from the Eigen library.
Definition: LDLT.h:16
type
The type the bitset is encoded with.
Definition: bitset.hpp:44
Definition: document.h:416
Definition: json.hpp:5678
const GenericPointer< typename T::ValueType > T2 value
Definition: pointer.h:1282
const GenericPointer< typename T::ValueType > T2 T::AllocatorType & a
Definition: pointer.h:1181
@ IsComplex
Definition: NumTraits.h:157
T Real
Definition: NumTraits.h:164
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:233
Determines whether the given binary operation of two numeric types is allowed and what the scalar ret...
Definition: XprHelper.h:806
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:293
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:291
Definition: MathFunctions.h:279
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:282
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:280
Definition: MathFunctions.h:301
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:304
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:302
Definition: MathFunctions.h:312
NumTraits< Scalar >::Real type
Definition: MathFunctions.h:313
Definition: MathFunctions.h:59
void type
Definition: MathFunctions.h:59
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:628
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:626
Definition: MathFunctions.h:614
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:617
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:615
Definition: MathFunctions.h:635
Definition: MathFunctions.h:639
NumTraits< Scalar >::Real type
Definition: MathFunctions.h:640
Definition: MathFunctions.h:432
static EIGEN_DEVICE_FUNC NewType run(const OldType &x)
Definition: MathFunctions.h:434
Definition: Meta.h:109
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:257
Definition: MathFunctions.h:245
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:247
Definition: MathFunctions.h:265
Definition: MathFunctions.h:269
Scalar type
Definition: MathFunctions.h:270
Definition: Meta.h:273
static EIGEN_DEVICE_FUNC std::complex< RealScalar > run(const std::complex< RealScalar > &x)
Definition: MathFunctions.h:2009
Definition: MathFunctions.h:674
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:675
Definition: MathFunctions.h:689
Scalar type
Definition: MathFunctions.h:690
Definition: MathFunctionsImpl.h:98
Definition: MathFunctions.h:422
NumTraits< Scalar >::Real type
Definition: MathFunctions.h:423
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:141
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:139
Definition: MathFunctions.h:127
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &)
Definition: MathFunctions.h:130
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:128
Definition: MathFunctions.h:148
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR const Scalar run(const Scalar &)
Definition: MathFunctions.h:224
EIGEN_DEVICE_FUNC static EIGEN_CONSTEXPR Scalar run(Scalar &)
Definition: MathFunctions.h:219
Definition: MathFunctions.h:201
static EIGEN_DEVICE_FUNC const RealScalar & run(const Scalar &x)
Definition: MathFunctions.h:209
static EIGEN_DEVICE_FUNC RealScalar & run(Scalar &x)
Definition: MathFunctions.h:204
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:202
Definition: MathFunctions.h:231
Definition: MathFunctions.h:235
NumTraits< Scalar >::Real & type
Definition: MathFunctions.h:236
Definition: MathFunctions.h:165
NumTraits< Scalar >::Real type
Definition: MathFunctions.h:166
Definition: Meta.h:159
Definition: Meta.h:148
static EIGEN_DEVICE_FUNC std::complex< RealScalar > run(const std::complex< RealScalar > &x)
Definition: MathFunctions.h:754
Definition: MathFunctions.h:738
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:739
Definition: MathFunctions.h:763
Scalar type
Definition: MathFunctions.h:764
static EIGEN_DEVICE_FUNC std::complex< Scalar > run(const std::complex< Scalar > &z)
Definition: MathFunctions.h:711
Definition: MathFunctions.h:701
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:702
Definition: Meta.h:182
Definition: MathFunctions.h:845
@ value
Definition: MathFunctions.h:847
@ middle
Definition: MathFunctions.h:846
Definition: MathFunctions.h:858
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:398
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:387
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:385
Definition: MathFunctions.h:380
Definition: MathFunctions.h:406
Definition: MathFunctions.h:410
NumTraits< Scalar >::Real type
Definition: MathFunctions.h:411
ScalarX result_type
Definition: MathFunctions.h:786
static EIGEN_DEVICE_FUNC ScalarX run(ScalarX x, ScalarY y)
Definition: MathFunctions.h:787
Definition: MathFunctions.h:773
static EIGEN_DEVICE_FUNC result_type run(const ScalarX &x, const ScalarY &y)
Definition: MathFunctions.h:776
ScalarBinaryOpTraits< ScalarX, ScalarY, internal::scalar_pow_op< ScalarX, ScalarY > >::ReturnType result_type
Definition: MathFunctions.h:775
static Scalar run(const Scalar &x, const Scalar &y)
Definition: MathFunctions.h:827
static Scalar run()
Definition: MathFunctions.h:831
static Scalar run()
Definition: MathFunctions.h:914
static Scalar run(const Scalar &x, const Scalar &y)
Definition: MathFunctions.h:887
static Scalar run()
Definition: MathFunctions.h:937
static Scalar run(const Scalar &x, const Scalar &y)
Definition: MathFunctions.h:932
Definition: MathFunctions.h:810
static bool run()
Definition: MathFunctions.h:1966
static bool run(const bool &a, const bool &b)
Definition: MathFunctions.h:1971
Definition: MathFunctions.h:813
Definition: MathFunctions.h:817
Scalar type
Definition: MathFunctions.h:818
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:93
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:91
Definition: MathFunctions.h:79
static EIGEN_DEVICE_FUNC RealScalar run(const Scalar &x)
Definition: MathFunctions.h:82
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:80
Definition: MathFunctions.h:100
Definition: MathFunctions.h:175
static EIGEN_DEVICE_FUNC const RealScalar & run(const Scalar &x)
Definition: MathFunctions.h:183
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:176
static EIGEN_DEVICE_FUNC RealScalar & run(Scalar &x)
Definition: MathFunctions.h:178
Definition: MathFunctions.h:191
NumTraits< Scalar >::Real & type
Definition: MathFunctions.h:192
Definition: MathFunctions.h:117
NumTraits< Scalar >::Real type
Definition: MathFunctions.h:118
static EIGEN_DEVICE_FUNC double run(const double &x)
Definition: MathFunctions.h:550
static EIGEN_DEVICE_FUNC float run(const float &x)
Definition: MathFunctions.h:558
Definition: MathFunctions.h:534
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:536
Definition: MathFunctions.h:567
Scalar type
Definition: MathFunctions.h:568
Definition: MathFunctions.h:471
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:473
Definition: MathFunctions.h:525
Scalar type
Definition: MathFunctions.h:526
Definition: MathFunctions.h:497
static EIGEN_DEVICE_FUNC Scalar run(const Scalar &x)
Definition: MathFunctions.h:499
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::complex< T > run(const std::complex< T > &x)
Definition: MathFunctions.h:363
Definition: MathFunctions.h:2034
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE T run(const T &x)
Definition: MathFunctions.h:2036
Definition: MathFunctions.h:371
Scalar type
Definition: MathFunctions.h:372
static EIGEN_DEVICE_FUNC bool isApproxOrLessThan(const Scalar &x, const Scalar &y, const RealScalar &prec)
Definition: MathFunctions.h:1893
static EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const RealScalar &prec)
Definition: MathFunctions.h:1888
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:1881
static EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, const RealScalar &prec)
Definition: MathFunctions.h:1883
static EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const Scalar &x, const Scalar &, const RealScalar &)
Definition: MathFunctions.h:1904
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:1902
static EIGEN_DEVICE_FUNC bool isApproxOrLessThan(const Scalar &x, const Scalar &y, const RealScalar &)
Definition: MathFunctions.h:1914
static EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const RealScalar &)
Definition: MathFunctions.h:1909
NumTraits< Scalar >::Real RealScalar
Definition: MathFunctions.h:1923
static EIGEN_DEVICE_FUNC bool isApprox(const Scalar &x, const Scalar &y, const RealScalar &prec)
Definition: MathFunctions.h:1930
static EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const Scalar &x, const OtherScalar &y, const RealScalar &prec)
Definition: MathFunctions.h:1925
Definition: MathFunctions.h:1876
static EIGEN_DEVICE_FUNC bool isMuchSmallerThan(const bool &x, const bool &, const bool &)
Definition: MathFunctions.h:1982
bool RealScalar
Definition: MathFunctions.h:1979
static EIGEN_DEVICE_FUNC bool isApprox(bool x, bool y, bool)
Definition: MathFunctions.h:1988
static EIGEN_DEVICE_FUNC bool isApproxOrLessThan(const bool &x, const bool &y, const bool &)
Definition: MathFunctions.h:1994
Definition: MathFunctions.h:1937
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE std::complex< T > run(const std::complex< T > &x)
Definition: MathFunctions.h:340
Definition: MathFunctions.h:322
static EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar run(const Scalar &x)
Definition: MathFunctions.h:324
Definition: MathFunctions.h:348
Scalar type
Definition: MathFunctions.h:349